Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/CircleRadon/TokenPacker

The code for "TokenPacker: Efficient Visual Projector for Multimodal LLM".
https://github.com/CircleRadon/TokenPacker

connector lmm mllm token-reduction tokenpacker visual-projector

Last synced: 13 days ago
JSON representation

The code for "TokenPacker: Efficient Visual Projector for Multimodal LLM".

Awesome Lists containing this project

README

        





TokenPacker-v1


arXiv


HF Model


ZhiHu

---

## Comparisons with existing methods 💡



## Updates 📌
- [2024/10/22] We integrated TokenPacker-HD framework with [Osprey](https://github.com/CircleRadon/Osprey) to achieve fine-grained high-resolution pixel-level understanding with large performance gains. Please see the codes in this [branch](https://github.com/CircleRadon/TokenPacker/tree/tokenpacker-hd-osprey) for your reference.
- [2024/7/25] We released [checkpoints](https://huggingface.co/collections/sunshine-lwt/tokenpacker-66a234618f0d2327e0cf2cb1), please check them.
- [2024/7/3] We released the [paper](https://arxiv.org/abs/2407.02392) of our TokenPacker on Arxiv.
- [2024/7/3] We released the training and inference codes.

## What is TokenPacker 👀
TokenPacker is a novel visual projector, which adopts a `coarse-to-fine` scheme
to inject the enriched characteristics to generate the condensed visual tokens. Using TokenPacker, we can compress the
visual tokens by **75%∼89%**, while achieves comparable or even better performance
across diverse benchmarks with significantly higher efficiency.

#### Algorithms
We provide the pseudo-codes to showcase the detailed processing flow.

#### Core codes
As a visual projector, TokenPacker is implemented by a `class TokenPacker`, which can be found in [multimodal_projector/builder.py](./llava/model/multimodal_projector/builder.py#L39)

#### Comparisons with various projectors

## High-Resolution Image Understanding with TokenPacker 🔬
To support efficient `high-resolution` image understanding, we further develop an effective image
cropping method `TokenPacker-HD`.

## Install 🛠️
1. Clone this repository and navigate to TokenPacker folder
```
git clone https://github.com/CircleRadon/TokenPacker.git
cd TokenPacker
```
2. Install packages
```
conda create -n tokenpacker python=3.10 -y
conda activate tokenpacker
pip install --upgrade pip # enable PEP 660 support
pip install -e .
```
3. Install additional packages for training cases
```
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
```

## Training 🚀

### LLaVA-TokenPacker

#### Dataset
To make a fair comparison, we use the same training data as in [LLaVA-1.5](https://github.com/haotian-liu/LLaVA), i.e., [LLaVA-Pretrain-558K](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/tree/main) for stage 1, and [Mix665k](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/tree/main) for stage 2.

#### Training
- Stage1: Image-Text Alignment Pre-training
```shell
bash scripts/v1_5/pretrain.sh
```
- Stage2: Visual Instruction Tuning
```shell
bash scripts/v1_5/finetune.sh
```
Note: Using `--scale_factor` to control compression ratio, support [2,3,4]

### LLaVA-TokenPacker-HD

#### Dataset
To obtain the competitive high-resolution performance, we use 2.7M data as organized by [Mini-Gemini](https://github.com/dvlab-research/MGM#Dataset), i.e., 1.2M for stage 1 and 1.5M for stage 2.

#### Training
- Stage1: Image-Text Alignment Pre-training
```shell
bash scripts/v1_5/pretrain_hd.sh
```
- Stage2: Visual Instruction Tuning
```shell
bash scripts/v1_5/finetune_hd.sh
```

Note:
- Using `--scale_factor` to control compression ratio, support [2,3,4].
- Using `--patch_num` to control max patch dividing number, support [9,16,25].

## Experiments

## Model Zoo

| Model | Max Res. | Compre. Ratio | Token Num. | Max Patch Num. | Training Data | Download |
|--------------------|:-----------:|:---------------:|:------------:|:----------------:|:--------------------------------------------------------------------------------------------------:|---------------------------------------------------------------------------------------|
| TokenPacker-7b | 336x336 | 1/4 | 144 | - | 558K+665K | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-7b-144token/tree/main) |
| TokenPacker-13b | 336x336 | 1/4 | 144 | - | 558K+665K | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-13b-144token/tree/main) |
| TokenPacker-HD-7b | 1088x1088 | 1/4 | ~954 | 9 | 1.2M+1.5M | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-HD-7b-9patch-144token/tree/main) |
| TokenPacker-HD-13b | 1088x1088 | 1/4 | ~954 | 9 | 1.2M+1.5M | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-HD-13b-9patch-144token/tree/main) |
| TokenPacker-HD-13b | 1344x1344 | 1/4 | ~1393 | 16 | 1.2M+1.5M | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-HD-13b-16patch-144token/tree/main) |
| TokenPacker-HD-13b | 1344x1344 | 1/9 | ~619 | 16 | 1.2M+1.5M | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-HD-13b-16patch-64token/tree/main) |
| TokenPacker-HD-13b | 1344x1344 | 1/16 | ~347 | 16 | 1.2M+1.5M | [checkpoints](https://huggingface.co/sunshine-lwt/TokenPacker-HD-13b-16patch-36token/tree/main) |

Note:
- The `token number` of TokenPacker-HD is the `average` statistically across all training and test data.
- The training data of `558K+665K` follows LLaVA-1.5, the one of `1.2M+1.5M` follows Mini-Gemini.
- All LLMs use Vicuna-7b/13b as based LLM.

## Visualization
We provide some visual examples.

High-resolution image understanding.

## TODO List 📝
- [x] Release the training and inference codes.
- [x] Release all checkpoints.

## Acknowledgement 💌
- [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA): the codebase we built upon.
- [Mini-Gemini](https://github.com/dvlab-research/MGM): the organized data we used for training high-resolution method.

## More ##
For more recent related works, please refer to this repo of [Awesome-Token-Compress](https://github.com/daixiangzi/Awesome-Token-Compress).

## BibTeX 🖊️
```
@misc{TokenPacker,
title={TokenPacker: Efficient Visual Projector for Multimodal LLM},
author={Wentong Li, Yuqian Yuan, Jian Liu, Dongqi Tang, Song Wang, Jianke Zhu and Lei Zhang},
year={2024},
eprint={2407.02392},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```