Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ClankPan/Vectune
https://github.com/ClankPan/Vectune
Last synced: 5 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/ClankPan/Vectune
- Owner: ClankPan
- License: other
- Created: 2024-03-22T17:50:49.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-04-10T21:18:21.000Z (7 months ago)
- Last Synced: 2024-04-11T03:05:10.538Z (7 months ago)
- Language: Rust
- Size: 156 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-internet-computer - Vectune - A lightweight vector database with incremental indexing based on FreshVamana for retrieval-augmented generation (RAG). (Decentralized AI / Solana)
README
# Vectune: fast Vamana indexing
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE-MIT)
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE-APACHE)Vectune is a lightweight VectorDB with Incremental Indexing, based on [FreshVamana](https://arxiv.org/pdf/2105.09613.pdf).
This project is implemented with the support of KinicDAO and powers the backend of [KinicVectorDB](https://xcvai-qiaaa-aaaak-afowq-cai.icp0.io/) for vector indexing.## Getting Start
By specifying progress-bar in features, you can check the progress of indexing.
```toml
[dependencies]
vectune = {version = "0.1.0", features = ["progress-bar"]}
```To perform calculations of Euclidean distances quickly using SIMD, it is necessary to specify `nightly` in example. If the `rust-analyzer` in VSCode gives an error for `#![feature(portable_simd)]`, please set up your `.vscode/settings.json`.
```json
{
"rust-analyzer.server.extraEnv": {
"RUSTUP_TOOLCHAIN": "nightly"
},
}
```## Example
### Setup and Run
To test with the SIFT1M dataset, please execute the following command. SIFT1M is a dataset of 1 million data points, each with 128 dimensions.
```bash
curl ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz -o examples/test_data/sift.tar.gz
tar -xzvf examples/test_data/sift.tar.gz -C examples/test_datacargo +nightly run --release --features progress-bar --example sift1m
```### How it works
Indexing is performed on the data using a Builder, and searches and insertions are conducted on the graph.
```rust
use vectune::{Builder, GraphInterface, PointInterface};let points = Vec::new();
for vec in base_vectors {
points.push(Point(vec.to_vec()));
}let (nodes, centroid) = Builder::default()
.progress(ProgressBar::new(1000))
.build(points);let mut graph = Graph::new(nodes, centroid);
let k = 50;
let (top_k_results, _visited) = vectune::search(&mut graph, &Point(query.to_vec()), k);
```### PointInterface Trait
You will need to define the dimensions and data type of the vectors used, as well as the method for calculating distance.
Please implement the following four methods:
- `distance(&self, other: &Self) -> f32`
- `fn dim() -> u32`
- `fn add(&self, other: &Self) -> Self`
- `fn div(&self, divisor: &usize) -> Self``distance()` can be optimized using SIMD. Please refer to `./examples/src/bin/sift1m.rs`.
The following example provides a simple implementation.
```rust
use vectune::PointInterface;#[derive(Serialize, Deserialize, Clone, Debug)]
struct Point(Vec);
impl Point {
fn to_f32_vec(&self) -> Vec {
self.0.iter().copied().collect()
}
fn from_f32_vec(a: Vec) -> Self {
Point(a.into_iter().collect())
}
}
impl PointInterface for Point {
fn distance(&self, other: &Self) -> f32 {
self.0
.iter()
.zip(other.0.iter())
.map(|(a, b)| {
let c = a - b;
c * c
})
.sum::()
.sqrt()
}
fn dim() -> u32 {
384
}
fn add(&self, other: &Self) -> Self {
Point::from_f32_vec(
self.to_f32_vec()
.into_iter()
.zip(other.to_f32_vec().into_iter())
.map(|(x, y)| x + y)
.collect(),
)
}
fn div(&self, divisor: &usize) -> Self {
Point::from_f32_vec(
self.to_f32_vec()
.into_iter()
.map(|v| v / *divisor as f32)
.collect(),
)
}
}
```### GraphInterface Trait
To accommodate the entire graph on storage solutions other than SSDs or other memory types, you need to implement the `GraphInterface`.
Please implement the following eleven methods:
- `fn alloc(&mut self, point: P) -> usize`
- `fn free(&mut self, id: &usize)`
- `fn cemetery(&self) -> Vec`
- `fn clear_cemetery(&mut self)`
- `fn backlink(&self, id: &usize) -> Vec`
- `fn get(&mut self, id: &usize) -> (P, Vec)`
- `fn size_l(&self) -> usize`
- `fn size_r(&self) -> usize`
- `fn size_a(&self) -> f32`
- `fn start_id(&self) -> usize`
- `fn overwirte_out_edges(&mut self, id: &usize, edges: Vec)``self.get()` is defined with `&mut self` because it handles caching from SSDs and other storage devices.
In `vectune::search()`, nodes returned by `self.cemetery()` are marked as tombstones and are excluded from the search results. Additionally, they are permanently deleted in `vectune::delete()`.
You need to manage backlinks when adding or deleting nodes. This is utilized in `vectune::delete()`.
The following example provides a simple on-memory implementation.
```rust
use vectune::GraphInterface;
use itertools::Itertools;struct Graph
where
P: VPoint,
{
nodes: Vec<(P, Vec)>,
backlinks: Vec>,
cemetery: Vec,
centroid: u32,
}impl
VGraph
for Graph
where
P: VPoint,
{
fn alloc(&mut self, point: P) -> u32 {
self.nodes.push((point, vec![]));
self.backlinks.push(vec![]);
(self.nodes.len() - 1) as u32
}fn free(&mut self, _id: &u32) {
// todo!()
}fn cemetery(&self) -> Vec {
self.cemetery.clone()
}fn clear_cemetery(&mut self) {
self.cemetery = Vec::new();
}fn backlink(&self, id: &u32) -> Vec {
self.backlinks[*id as usize].clone()
}fn get(&mut self, id: &u32) -> (P, Vec) {
let node = &self.nodes[*id as usize];
node.clone()
}fn size_l(&self) -> usize {
125
}fn size_r(&self) -> usize {
70
}fn size_a(&self) -> f32 {
2.0
}fn start_id(&self) -> u32 {
self.centroid
}fn overwirte_out_edges(&mut self, id: &u32, edges: Vec) {
for out_i in &self.nodes[*id as usize].1 {
let backlinks = &mut self.backlink(out_i);
backlinks.retain(|out_i| out_i != id)
}for out_i in &edges {
let backlinks = &mut self.backlink(out_i);
backlinks.push(*id);
backlinks.sort();
backlinks.dedup();
}self.nodes[*id as usize].1 = edges;
}
}```
## Indexing
- `a` is the threshold for RobustPrune; increasing it results in more long-distance edges and fewer nearby edges.
- `r` represents the number of edges; increasing it adds complexity to the graph but reduces the number of isolated nodes.
- `l` is the size of the retention list for greedy-search; increasing it allows for the construction of more accurate graphs, but the computational cost grows exponentially.
- `seed` is used for initializing random graphs; it allows for the fixation of the random graph, which can be useful for debugging.```rust
let (nodes, centroid) = Builder::default()
.set_a(2.0)
.set_r(70)
.set_l(125)
.set_seed(11677721592066047712)
.progress(ProgressBar::new(1000))
.build(points);
```## Searching
`k` represents the number of top-k results. It is necessary that `k <= l`.
```rust
vectune::search(&mut graph, &point, k);
```## Inserting
```rust
vectune::insert(&mut graph, point);
```## Deleting
Completely remove the nodes returned by `graph.cemetery()` from the graph.
```rust
vectune::delete(&mut graph);
```## Ordering
Reordering the arrangement to efficiently reference nodes from storage such as SSDs.
This algorithm is proposed in Section 4 of this [paper](https://arxiv.org/pdf/2211.12850v2.pdf).```rust
vectune::gorder(
edges, // Vec>
backlinks, // Vec>
10, // Number of nodes in one section
&mut rng,
);
```