Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Crane-YU/rethink_rotation
[AAAI 2023] Rethinking Rotation Invariance with Point Cloud Registration (official pytorch implementation) https://rotation3d.github.io/
https://github.com/Crane-YU/rethink_rotation
point-cloud rotation-invariant
Last synced: about 2 months ago
JSON representation
[AAAI 2023] Rethinking Rotation Invariance with Point Cloud Registration (official pytorch implementation) https://rotation3d.github.io/
- Host: GitHub
- URL: https://github.com/Crane-YU/rethink_rotation
- Owner: Crane-YU
- Created: 2022-12-27T10:20:58.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2022-12-30T07:52:12.000Z (almost 2 years ago)
- Last Synced: 2024-08-01T03:41:27.482Z (5 months ago)
- Topics: point-cloud, rotation-invariant
- Language: Python
- Homepage:
- Size: 2.18 MB
- Stars: 25
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Rethink Rotation
Official implementation of "Rethinking Rotation Invariance with Point Cloud Registration", AAAI 2023
[[Paper]]() [[Supp.]]() [[Video]]()
![img](docs/teaser.png)
## Requirements
To build the CUDA kernel for FPS:
```
pip install pointnet2_ops_lib/.
```
NOTE: If you encounter problems while building the kernel,
you can refer to [Pointnet2_PyTorch](https://github.com/erikwijmans/Pointnet2_PyTorch) for solutions.## Code
This repo contains Pytorch implementation of the following modules:
- [x] ModelNet40 Classification under rotations
```
bash scripts/modelnet_cls.sh
```
- [x] ScanObjectNN Classification under rotations
```
bash scripts/scanobject_cls.sh
```
- [ ] ShapeNetPart Segmentation under rotations## Performance
* State-of-the-art accuracy on ModelNet40 under rotation: 91.0% (z/z), 91.0% (z/SO(3)).
* State-of-the-art accuracy on ScanObjectNN OBJ_BG classification under rotation: 86.6% (z/z), 86.3% (z/SO(3)).
* State-of-the-art micro and macro mAP on ShapeNetCore55 under rotation: 0.715, 0.510.
* ShapeNetPart segmentation under rotation: 80.3% (z/z), 80.4% (z/SO(3)).## Citation
If you find this repo useful in your work or research, please cite:
## Acknowledgement
Our code borrows a lot from:
- [DGCNN](https://github.com/WangYueFt/dgcnn)
- [DGCNN.pytorch](https://github.com/AnTao97/dgcnn.pytorch)
- [PointContrast](https://github.com/facebookresearch/PointContrast)