https://github.com/CrazyVertigo/awesome-data-augmentation
This is a list of awesome methods about data augmentation.
https://github.com/CrazyVertigo/awesome-data-augmentation
Last synced: 8 months ago
JSON representation
This is a list of awesome methods about data augmentation.
- Host: GitHub
- URL: https://github.com/CrazyVertigo/awesome-data-augmentation
- Owner: CrazyVertigo
- Created: 2019-12-22T13:13:12.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2021-03-14T04:37:04.000Z (over 4 years ago)
- Last Synced: 2024-09-11T19:24:11.186Z (about 1 year ago)
- Homepage:
- Size: 33 MB
- Stars: 774
- Watchers: 20
- Forks: 106
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-of-awesome-ml - awesome-data-augmentation (by CrazyVertigo)
- Awesome-Paper-List - Data Augmentation
- awesome-ai-list-guide - awesome-data-augmentation - data-augmentation.svg?style=social): This is a list of awesome methods about data augmentation. (Speech)
README
This library helps you with augmenting images for your machine learning projects. It converts a set of input images into a new, much larger set of slightly altered images. Many very popular projects have been integrated. New methods like augmix,cutmix,are being tracked. Whether you're a researcher or an engineer, just enjoy it!
# Popular Projects
## imgaug

- intro: 2019
- github star: 7.8k
- github:
## Albumentations
**Albumentations: fast and flexible image augmentations**

- intro: ArXiv 2018
- github star: 4.1k
- arxiv:
- github:
## Augmentor
**Biomedical image augmentation using Augmentor**

- intro: Bioinformatics
- github star: 3.7k
- arxiv:
- github:
- docs:
Augmentor is a Python package designed to aid the augmentation and artificial generation of image data for machine learning tasks. It is primarily a data augmentation tool, but will also incorporate basic image pre-processing functionality.
# Papers&Codes

## mixup
**Mixup: BEYOND EMPIRICAL RISK MINIMIZATION**
- intro: ICLR2018
- arxiv:
- github:
Mixup is a generic and straightforward data augmentation principle. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples.
## Cutout
**Improved Regularization of Convolutional Neural Networks with Cutout**
- intro: arXiv 2017
- arxiv:
- github:
## Cutmix
**CutMix:Regularization Strategy to Train Strong Classifiers with Localizable Features**

- intro: ICCV 2019 (oral talk)
- arxiv:
- github:
## Augmix
**AUGMIX: A SIMPLE DATA PROCESSING METHOD TO IMPROVE ROBUSTNESS AND UNCERTAINTY**
- intro: ICLR 2020
- arxiv:
- github:
## copy-paste
**Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation**

- intro: 2020
- provider: google
- arxiv:
- github:
-
## fast-autoaugment
**Fast AutoAugment**
- intro: NeurIPS 2019
- github star: 671
- arxiv:
- github:
## AutoAugment
**AutoAugment:Learning Augmentation Strategies from Data**
- intro: CVPR 2019
- provider: google
- arxiv:
- github:
## RandAugment
**RandAugment: Practical automated data augmentation with a reduced search space**

- intro: ICLR 2020
- provider: google
- arxiv:
- github:
## Random-Erasing
**Random Erasing Data Augmentation**
| black | white | random |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
||| |
||| |
- intro: AAAI 2020
- arxiv:
- github:
## GridMask
**GridMaskDataAugmentation**

- intro: 2020.01
- arxiv:
- github:
- 知乎参考:
## MMD
**A Person Re-identification Data Augmentation Method with Adversarial Defense Effect**

- intro: 2021.01
- arxiv:
- github:
## imagecorruptions
**Benchmarking Robustness in Object Detection:Autonomous Driving when Winter is Coming**

- intro: arXiv 2019
- arxiv:
- github:
## CycleGAN
**Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss**

- intro: ICCV 2017
- arxiv:
- provider: UC Berkeley
- github:
- github:
## ALAE
**Adversarial Latent Autoencoders**

- intro: CVPR 2020
- arxiv:
- github:
## Small Object Augmentation
**Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss**

- intro: 2017
- arxiv:
- github:
## Segmentation & Matting
**Real-Time High-Resolution Background Matting**

- intro: 2020.12
- arxiv:
- github:
## Image Composition:Deep Image Harmonization
**Deep Image Harmonization via Domain Verification**
- intro: CVPR 2020
- provider: SJTU
- arxiv:
- github:
**InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting**
- intro: ICCV 2019
- provider: SJTU
- arxiv:
- github:
# Hard data mining
**Unsupervised Hard Example Mining from Videos for Improved Object Detection**

- intro: ECCV 2018
- arxiv:
- github:
- project:
- demo video:
- 知乎参考:
# Annotation Tools
## labelImg

- intro: 2017
- github star: 9.8k
- github:
LabelImg is a graphical image annotation tool and label object bounding boxes in images.
## labelme

- intro: 2017
- github star: 4.2k
- github:
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
# Continuous updating...
If you find this library useful for your research, please consider starring the GitHub repository.