Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/CyberZHG/keras-radam
RAdam implemented in Keras & TensorFlow
https://github.com/CyberZHG/keras-radam
adam keras optimizers radam rectified-adam tensorflow
Last synced: 3 months ago
JSON representation
RAdam implemented in Keras & TensorFlow
- Host: GitHub
- URL: https://github.com/CyberZHG/keras-radam
- Owner: CyberZHG
- License: mit
- Archived: true
- Created: 2019-08-16T08:14:46.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-01-22T10:40:58.000Z (about 3 years ago)
- Last Synced: 2024-10-31T08:05:30.136Z (3 months ago)
- Topics: adam, keras, optimizers, radam, rectified-adam, tensorflow
- Language: Python
- Homepage: https://pypi.org/project/keras-rectified-adam/
- Size: 54.7 KB
- Stars: 325
- Watchers: 15
- Forks: 46
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Keras RAdam
[![Version](https://img.shields.io/pypi/v/keras-rectified-adam.svg)](https://pypi.org/project/keras-rectified-adam/)
![License](https://img.shields.io/pypi/l/keras-rectified-adam.svg)\[[中文](https://github.com/CyberZHG/keras-radam/blob/master/README.zh-CN.md)|[English](https://github.com/CyberZHG/keras-radam/blob/master/README.md)\]
Unofficial implementation of [RAdam](https://arxiv.org/pdf/1908.03265v1.pdf) in Keras.
## Install
```bash
pip install keras-rectified-adam
```## External Link
- [tensorflow/addons:RectifiedAdam](https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/rectified_adam.py)
## Usage
```python
from tensorflow import keras
import numpy as np
from keras_radam import RAdam# Build toy model with RAdam optimizer
model = keras.models.Sequential()
model.add(keras.layers.Dense(input_shape=(17,), units=3))
model.compile(RAdam(), loss='mse')# Generate toy data
x = np.random.standard_normal((4096 * 30, 17))
w = np.random.standard_normal((17, 3))
y = np.dot(x, w)# Fit
model.fit(x, y, epochs=5)
```### Use Warmup
```python
from keras_radam import RAdamRAdam(total_steps=10000, warmup_proportion=0.1, min_lr=1e-5)
```