Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/DAMO-NLP-SG/M3Exam
Data and code for paper "M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models"
https://github.com/DAMO-NLP-SG/M3Exam
ai-education chatgpt evaluation gpt-4 large-language-models llms multilingual multimodal
Last synced: 2 months ago
JSON representation
Data and code for paper "M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models"
- Host: GitHub
- URL: https://github.com/DAMO-NLP-SG/M3Exam
- Owner: DAMO-NLP-SG
- Created: 2023-06-09T08:41:11.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-06-15T03:07:28.000Z (over 1 year ago)
- Last Synced: 2024-08-03T02:09:23.938Z (5 months ago)
- Topics: ai-education, chatgpt, evaluation, gpt-4, large-language-models, llms, multilingual, multimodal
- Language: Python
- Homepage:
- Size: 686 KB
- Stars: 88
- Watchers: 9
- Forks: 12
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-llm-eval - M3Exam
- StarryDivineSky - DAMO-NLP-SG/M3Exam
README
# M3Exam: A Multilingual 🌏, Multimodal 🖼, Multilevel 📈 Benchmark for LLMs
This is the repository for [M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models](https://arxiv.org/pdf/2306.05179.pdf).
TL;DR: We introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context.
![image](./images/m3exam-examples.jpg)
## Data
### Access the data
* You can download the data from [here](https://cutt.ly/m3exam-data).
* The downloaded folder will be encrypted (to prevent some automatic crawling scripts). Please get the password from the bottom of this page.
* After unzipping the file, you will see the following file structure:
```
data/
multimodal-questions/ <- questions requiring images
xx-questions-image.json <- file containing the questions, xx is a language
iamges-xx/ <- folder containg all the images for xx
text-questions/ <- questions with pure text
xx-questions-dev.json <- held-out data (e.g., can be used as in-context examples)
xx-questions-test.json <- main test data for evaluation
```### Data format
* Questions are stored in json format, you can read each json file to check the data. For example:```python
with open(f'./data/text-question/{lang}-questions-dev.json', 'w') as f:
data = json.load(f) # data is a list of questions
```* Each question is stored in json format:
```
{
'question_text': 'Which Civil War event occurred first?',
'background_description': [],
'answer_text': '2',
'options': ['(1) battle of Gettysburg',
'(2) firing on Fort Sumter',
'(3) assassination of President Lincoln',
'(4) Emancipation Proclamation'],
'need_image': 'no',
'language': 'english',
'level': 'mid',
'subject': 'social',
'subject_category': 'social-science',
'year': '2006'
}
```## Evaluation
* first you need to fill in your OpenAI API key in the bash files:
```
python main.py \
--setting zero-shot \
--model chat \
--use_api \
--selected_langs "['english']" \
--api_key #put your key here
```
* then you can quickly check by running `quick_run.sh`, which will run on 10 English questions and produce `english-pred.json` in the corresponding output folder
* to evaluate, you can also run `eval.sh` to check the performance on this 10 examples!
* to run on more data, you can refer to `run.sh` for more detailed settings
```
python main.py \
--setting zero-shot \
--model chat \
--use_api \
--selected_langs "['english']" \
--selected_levels "['low', 'mid', 'high']" \
--num_samples all \
--api_key #put your key here
```
* specify the languages you want to run through `--selected_langs`
* running on all questions, set `--num_samples all`## Citation
If you find this useful in your research, please consider citing it:
```
@article{zhang2023m3exam,
title={M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models},
author={Wenxuan Zhang and Sharifah Mahani Aljunied and Chang Gao and Yew Ken Chia and Lidong Bing},
year={2023},
eprint={2306.05179},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```password: 12317