Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Daheer/Driving-Environment-Detector
Detecting road objects using YOLO CNN Architecture
https://github.com/Daheer/Driving-Environment-Detector
computer-vision deep-learning detection tensorflow yolov2
Last synced: 3 months ago
JSON representation
Detecting road objects using YOLO CNN Architecture
- Host: GitHub
- URL: https://github.com/Daheer/Driving-Environment-Detector
- Owner: Daheer
- License: mit
- Created: 2022-06-14T16:34:35.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-11-20T08:19:27.000Z (over 1 year ago)
- Last Synced: 2024-08-02T01:23:13.937Z (7 months ago)
- Topics: computer-vision, deep-learning, detection, tensorflow, yolov2
- Language: Python
- Homepage:
- Size: 6.79 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - Daheer/Driving-Environment-Detector - Environment-Detector?style=social"/> : Detecting road objects using YOLO CNN Architecture. (Applications)
- awesome-yolo-object-detection - Daheer/Driving-Environment-Detector - Environment-Detector?style=social"/> : Detecting road objects using YOLO CNN Architecture. (Applications)
README
# Driving-Environment-Detector
**Driving-Environment-Detector** recognizes everyday road objects on a road scene. It is based on the You Only Look Once CNN Architecture, specifically the YOLO v2 Darknet 19.

# Model Architecture Plot
[Click to view full architecture](images/yolo_model_architecture.png)

# Built Using
- [Python](https://www.python.org)
- [Tensorflow](https://www.tensorflow.org)
- [OpenCV](https://opencv.org/)
- Others# Prerequisites and Installation
# Project Structure
```
.
├── README.md
├── FiraMono-Medium.otf
├── SIL Open Font License.txt
├── Images
│ ├── sample.png
│ ├── yolo_model_architecture_short.png
│ ├── yolo_model_architecture.png
│ ├── yolo v2 darknet19.png
│ ├── sample_input.png
│ └── sample_input.png
├── model data
│ ├── variables
│ │ ├── anchors.txt
│ │ ├── coco_classes.txt
│ │ ├── pascal_classes.txt
│ │ ├── saved_model.pb
│ │ └── yolo_anchors.txt
│ └── yad2k
│ │ ├── __pycache__
│ │ ├── models
│ │ └── utils
│ │ │ └── util.py
├── .gitattributes
├── driving_environment_detector_voila.ipynb
├── driving_environment_detector.ipynb
├── driving_environment_detector.py
└── requirements.txt
```
# Usage
> Simply place your video covering a road scene in the top directory. Run the installation code, sip
some coffee or take a walk depending on the legth of your video :). When completed, the new video
can be found in out/output_video.mp4
# Demo
Sample Input | Sample Output
:-------------------------:|:-------------------------:
 | 
# References
- [SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing - Scientific Figure on ResearchGate.](https://www.researchgate.net/figure/YOLOv2-backbone-convolutional-neural-networks-CNN-architecture-The-backbone-network-is_fig3_342941568)
- [Convolutional Neural Netwokrs](https://www.coursera.org/learn/convolutional-neural-networks/home/)
# Contact
Dahir Ibrahim (Deedax Inc) - http://instagram.com/deedax_inc
Email - [email protected]
YouTube - https://www.youtube.com/channel/UCqvDiAJr2gRREn2tVtXFhvQ
Project Link - https://github.com/Daheer/Driving-Environment-Detector
Twitter - https://twitter.com/DeedaxInc