Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/DataXujing/YOLO-V3-Tensorflow

:construction_worker: :construction_worker::construction_worker: YOLO V3(Tensorflow 1.x) 安全帽 识别 | 提供数据集下载和与预训练模型
https://github.com/DataXujing/YOLO-V3-Tensorflow

cv object-detection tensorflow yolov3

Last synced: 2 months ago
JSON representation

:construction_worker: :construction_worker::construction_worker: YOLO V3(Tensorflow 1.x) 安全帽 识别 | 提供数据集下载和与预训练模型

Awesome Lists containing this project

README

        

## Tensorflow 实现YOLO V3检测安全帽佩戴

**Xu Jing**

最近几年深度学习的发展让很多计算机视觉任务落地成为可能,这些任务渗透到了各行各业,比如工业安全,包含的任务如安全帽佩戴检测、高空坠物检测、异常事故检测(行人跌倒不起等),火灾检测等等,我们使用YOLO V3训练了一个安全帽佩戴检测的模型。

### 1. 📣 数据介绍

确定了业务场景之后,需要收集大量的数据(之前参加过一个安全帽识别检测的比赛,但是数据在比赛平台无法下载为己用),一般来说包含两大来源,一部分是网络数据,可以通过百度、Google图片爬虫拿到,另一部分是用户场景的视频录像,后一部分相对来说数据量更大,但出于商业因素几乎不会开放。本项目使用开源的安全帽检测数据集([SafetyHelmetWearing-Dataset, SHWD](https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset))主要通过爬虫拿到,总共有7581张图像,包含9044个佩戴安全帽的bounding box(正类),以及111514个未佩戴安全帽的bounding box(负类),所有的图像用labelimg标注出目标区域及类别。其中每个bounding box的标签:“hat”表示佩戴安全帽,“person”表示普通未佩戴的行人头部区域的bounding box。另外本数据集中person标签的数据大多数来源于[SCUT-HEAD](https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release)数据集,用于判断是未佩戴安全帽的人。大致说一下数据集构造的过程:

1.数据爬取

用的爬百度图片和Google图片的方法,百度图片用自己写的访问web页面的方式,通过不同的关键词多线程爬取数据,如果是Google图的话推荐用google-images-download,使用方法不多描述,也是爬取多个不同的关键词。关键词是个很有意思的选项,直接用“安全帽”这样的并不是一个好的选择,更多的时候可以用“建筑工人”等之类的词语;英文注意安全帽既可以是“safety Helmet”也可以是“safety hat”,“hard hat”等等。

2.数据清洗

显然用以上爬取得到的图片包含大量重复的,或者是并不包含ROI的图片,需要过滤掉大量的这些图片,这里介绍自己用到的几个方法:

(1)用已有的行人检测方法过滤掉大部分非ROI图像;

(2)可以使用深度学习模型zoo,比如ImageNet分类预训练好的模型提取特征,判断图像相似度,去除极为相似的图像;

(3)剩余的部分存在重名或者文件大小一致的图像,通常情况下这些都是不同链接下的相同图片,在数量少的情况下可以手动清洗。

3.bounding box标注

用的开源标注工具labelImg,这个没什么多说的,是个体力活,不过一个更为省力的方法是**数据回灌**,也就是先用标注好的一部分数据训练出一个粗糙的检测模型,精度虽然不高,不过可以拿来定位出大致的目标区域位置,然后进行手动调整bounding box位置,这样省时省力,反复这样可以减少工期。另外标注的过程中会出不少问题比如由于手抖出现图中小圈的情形,这种情况会导致标注的xml出现bounding box的四个坐标宽或高相等,显然不符合常理,所以需要手动写脚本检查和处理有这种或者其他问题的xml的annotation,比如还有的检测算法不需要什么都没标注的背景图像,可以检测有没有这种“空”类别的数据;甚至是笔误敲错了类别的标签;等等这些都需要手动写自动化或半自动化的脚本来做纠错处理,这样的工具在标注时应该经常用到。也可以看出,一旦标注项目形成规模,规范的自动化流程会节省很多资源。

### 2.✨ 模型介绍

我们使用纯Tensorflow实现的[YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf). 包含了训练和测试自己数据集的全pipeline. 其主要的特点包括:

- 高效的 tf.data pipeline
- 将COCO数据集预训练的模型迁移学习
- 支持GPU版的NMS.
- 训练和测试推断过程全部有代码样例.
- 使用Kmeans自己训练先验的anchor.

Python 版本: 2 or 3

Packages:

- tensorflow >= 1.8.0 (支持tf.data的版本都可以)
- opencv-python
- tqdm

将预训练的darknet的权重下载,官方下载地址:,并将该weight文件拷贝到`./data/darknet_weights/`下,因为这是darknet版本的预训练权重,需要转化为Tensorflow可用的版本,运行如下代码可以实现:

```shell
python convert_weight.py
# 注意先编译完模型再去改变最新的yolo_anchor[改变anchor请参考:使用Kmeans生成先验anchors]
```

这样转化后的Tensorflow checkpoint文件被存放在:`./data/darknet_weights/`目录。你也可以下载已经转化好的模型:[GitHub Release](https://github.com/DataXujing/YOLO-V3-Tensorflow/releases/tag/1.0)

### 3.🔰 训练数据构建

训练集的整体结构同VOC相同,可以参考VOC构建自己的数据集。

(1) annotation文件

运行

```shell
python data_pro.py
```
分割训练集,验证集,测试集并在`./data/my_data/labal`下生成`train.txt/val.txt/test.txt`,对于一张图像对应一行数据,包括`image_index`,`image_absolute_path`, `img_width`, `img_height`,`box_1`,`box_2`,...,`box_n`,每个字段中间是用空格分隔的,其中:

+ `image_index`文本的行号
+ `image_absolute_path` 一定是绝对路径
+ `img_width`, `img_height`,`box_1`,`box_2`,...,`box_n`中涉及数值的取值一定取int型
+ `box_x`的形式为:`label_index, x_min,y_min,x_max,y_max`(注意坐标原点在图像的左上角)
+ `label_index`是label对应的index(取值为[0~class_num-1]),这里要注意YOLO系列的模型训练与SSD不同,label不包含background

例子:

```
0 xxx/xxx/a.jpg 1920,1080,0 453 369 473 391 1 588 245 608 268
1 xxx/xxx/b.jpg 1920,1080,1 466 403 485 422 2 793 300 809 320
...
```

(2) class_names文件:

`coco.names`文件在 `./data/` 路径下,每一行代表一个label name,例如:

```
hat
person
```

(3) 先验anchor文件:

使用Kmeans生成先验anchors:

```
python get_kmeans.py
```


可以得到9个anchors和平均的IOU,把anchors保存在文本文件:`./data/yolo_anchors.txt`,

**注意: Kmeans计算出的YOLO Anchors是在调整大小的图像比例的,默认的调整大小方法是保持图像的纵横比。**

### 4.📝 训练

修改`arg.py`中的一些参数,如下:

修改arg.py



### Some paths
train_file = './data/my_data/label/train.txt' # The path of the training txt file.
val_file = './data/my_data/label/val.txt' # The path of the validation txt file.
restore_path = './data/darknet_weights/yolov3.ckpt' # The path of the weights to restore.
save_dir = './checkpoint/' # The directory of the weights to save.
log_dir = './data/logs/' # The directory to store the tensorboard log files.
progress_log_path = './data/progress.log' # The path to record the training progress.
anchor_path = './data/yolo_anchors.txt' # The path of the anchor txt file.
class_name_path = './data/coco.names' # The path of the class names.
### Training releated numbers
batch_size = 32 #6
img_size = [416, 416] # Images will be resized to `img_size` and fed to the network, size format: [width, height]
letterbox_resize = True # Whether to use the letterbox resize, i.e., keep the original aspect ratio in the resized image.
total_epoches = 500
train_evaluation_step = 100 # Evaluate on the training batch after some steps.
val_evaluation_epoch = 50 # Evaluate on the whole validation dataset after some epochs. Set to None to evaluate every epoch.
save_epoch = 10 # Save the model after some epochs.
batch_norm_decay = 0.99 # decay in bn ops
weight_decay = 5e-4 # l2 weight decay
global_step = 0 # used when resuming training
### tf.data parameters
num_threads = 10 # Number of threads for image processing used in tf.data pipeline.
prefetech_buffer = 5 # Prefetech_buffer used in tf.data pipeline.
### Learning rate and optimizer
optimizer_name = 'momentum' # Chosen from [sgd, momentum, adam, rmsprop]
save_optimizer = True # Whether to save the optimizer parameters into the checkpoint file.
learning_rate_init = 1e-4
lr_type = 'piecewise' # Chosen from [fixed, exponential, cosine_decay, cosine_decay_restart, piecewise]
lr_decay_epoch = 5 # Epochs after which learning rate decays. Int or float. Used when chosen `exponential` and `cosine_decay_restart` lr_type.
lr_decay_factor = 0.96 # The learning rate decay factor. Used when chosen `exponential` lr_type.
lr_lower_bound = 1e-6 # The minimum learning rate.
# only used in piecewise lr type
pw_boundaries = [30, 50] # epoch based boundaries
pw_values = [learning_rate_init, 3e-5, 1e-5]
### Load and finetune
# Choose the parts you want to restore the weights. List form.
# restore_include: None, restore_exclude: None => restore the whole model
# restore_include: None, restore_exclude: scope => restore the whole model except `scope`
# restore_include: scope1, restore_exclude: scope2 => if scope1 contains scope2, restore scope1 and not restore scope2 (scope1 - scope2)
# choise 1: only restore the darknet body
# restore_include = ['yolov3/darknet53_body']
# restore_exclude = None
# choise 2: restore all layers except the last 3 conv2d layers in 3 scale
restore_include = None
restore_exclude = ['yolov3/yolov3_head/Conv_14', 'yolov3/yolov3_head/Conv_6', 'yolov3/yolov3_head/Conv_22']
# Choose the parts you want to finetune. List form.
# Set to None to train the whole model.
update_part = ['yolov3/yolov3_head']
### other training strategies
multi_scale_train = True # Whether to apply multi-scale training strategy. Image size varies from [320, 320] to [640, 640] by default.
use_label_smooth = True # Whether to use class label smoothing strategy.
use_focal_loss = True # Whether to apply focal loss on the conf loss.
use_mix_up = True # Whether to use mix up data augmentation strategy.
use_warm_up = True # whether to use warm up strategy to prevent from gradient exploding.
warm_up_epoch = 3 # Warm up training epoches. Set to a larger value if gradient explodes.
### some constants in validation
# nms
nms_threshold = 0.45 # iou threshold in nms operation
score_threshold = 0.01 # threshold of the probability of the classes in nms operation, i.e. score = pred_confs * pred_probs. set lower for higher recall.
nms_topk = 150 # keep at most nms_topk outputs after nms
# mAP eval
eval_threshold = 0.5 # the iou threshold applied in mAP evaluation
use_voc_07_metric = False # whether to use voc 2007 evaluation metric, i.e. the 11-point metric
### parse some params
anchors = parse_anchors(anchor_path)
classes = read_class_names(class_name_path)
class_num = len(classes)
train_img_cnt = len(open(train_file, 'r').readlines())
val_img_cnt = len(open(val_file, 'r').readlines())
train_batch_num = int(math.ceil(float(train_img_cnt) / batch_size))
lr_decay_freq = int(train_batch_num * lr_decay_epoch)
pw_boundaries = [float(i) * train_batch_num + global_step for i in pw_boundaries]

运行:

```shell
CUDA_VISIBLE_DEVICES=GPU_ID python train.py
```

我们训练的环境为:

+ ubuntu 16.04
+ Tesla V100 32G

### 5.🔖 推断

我们使用`test_single_image.py`和`video_test.py`推断单张图片和视频,测试Demo在`6.⛏Demo`提供。你可以下载我们预训练的安全帽识别模型进行测试,下载地址:[GitHub Release](https://github.com/DataXujing/YOLO-V3-Tensorflow/releases/tag/model)

```
python3 test_single_image.py /home/myuser/xujing/YOLO_V3_hat/data/my_data/JPEGImages/000002.jpg
```

### 6.⛏Demo




### 7.⛏训练的一些Trick

这些Trick来源于:

(1) 使用two-stage训练或one-stage训练:

+ Two-stage training:

- 第一阶段:在COCO数据集训练的ckeckpoints上加载darknet53_body部分的weights,训练YOLO V3的head部分,使用较大的学习率比如0.001,直到损失降下来;
- 第二阶段:加载第一阶段训练的模型,训练整个模型的参数,使用较小的学习率比如0.0001。

+ One-stage training:

直接加载除Conv_6,Conv_14和Conv_22(这三层是输出层需要根据自己训练数据调整)的预训练模型,这种情况需要注意Loss的nan问题,对于该项目为了简单,我们采用One-stage training。

(2) args.py中有很多有用的训练参数调整策略:

+ 学习率的decay(Cosine decay of lr (SGDR))

+ 多尺度训练(Multi-scale training)

+ 标签平滑(Label smoothing)

+ 数据增强(Mix up data augmentation)

+ Focal loss(来源于RetinaNet主要修正目标检测中的unblance问题)

这么多策略,不一定都能提升你的模型性能,根据自己的数据集自行调整选择.

(3) 注意:

来自于gluon-cv的这篇[paper](https://arxiv.org/abs/1902.04103) 已经证明对于YOLO V3数据增强是很有必要的, 但是对于我们的实验来看一些数据增强的策略看起来是合理的,但是会导致我们的模型不work,比如,使用随机的色彩抖动数据增强策略,我们的模型的mAP掉的很厉害,所有需要好好研究数据增强的使用策略。

(4) Loss nan?

出现Loss nan的情况尽量设置大一点的warm_up_epoch的值,或者小一点的学习率,多试几次。如果你使用的是one-stage的训练过程,使用adam优化器可能会出现nan的问题,请选择momentum optimizer

### 8.😉 致谢

Name | GitHub |
:-: | :-: |
:shipit: **Wizyoung** | |
:shipit: **njvisionpower** ||
:shipit: **HCIILAB** | |