Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/DataXujing/YOLOv7
:fire::fire::fire: Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断
https://github.com/DataXujing/YOLOv7
object-detection tensorrt yolov7
Last synced: 2 months ago
JSON representation
:fire::fire::fire: Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断
- Host: GitHub
- URL: https://github.com/DataXujing/YOLOv7
- Owner: DataXujing
- License: gpl-3.0
- Created: 2022-07-10T09:05:12.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-07-10T10:05:41.000Z (over 2 years ago)
- Last Synced: 2024-08-02T01:17:41.197Z (6 months ago)
- Topics: object-detection, tensorrt, yolov7
- Language: Python
- Homepage:
- Size: 1.53 MB
- Stars: 45
- Watchers: 2
- Forks: 10
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-yolo-object-detection - DataXujing/YOLOv7
- awesome-yolo-object-detection - DataXujing/YOLOv7
README
## Official YOLOv7 训练自己的数据集(端到端TensorRT 模型部署)
目前适用的版本: `v0.1`
> 我只能说太卷了!
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
#### Performance
MS COCO
| Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
| | | | | | | |
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |### 1.训练环境配置
```shell
# create the docker container, you can change the share memory size if you have more. # 注意这个share memory尽量设置的大一点,训练的话!
sudo nvidia-docker run --name yolov7 -it -v /home/myuser/xujing/hackathon2022:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx# pip install required packages
pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/# go to code folder
cd /yolov7
```### 2.训练集准备
YOLOv7类似于YOLOR支持YOLOv5类型的标注数据构建,如果你熟悉YOLOv5的训练集的构造过程,该部分可以直接跳过,这里我们提供了构建数据集的代码,将数据集存放在`./dataset`下:
```shell
./datasets/score # 存放的文件,score是数据集的名称
├─images # 训练图像,每个文件夹下存放了具体的训练图像
│ ├─train
│ └─val
└─labels # label,每个文件夹下存放了具体的txt标注文件,格式满足YOLOv5
├─train
└─val
```我们提供了VOC标注数据格式转换为YOLOv5标注的具体代码,存放在`./dataset`下,关于YOLOv5的标注细节可以参考:
+ https://github.com/DataXujing/YOLO-v5
+ https://github.com/DataXujing/YOLOv6#2%E6%95%B0%E6%8D%AE%E5%87%86%E5%A4%87### 3.模型结构或配置文件修改
+ 1.修改模型的配置文件
i.训练数据的配置:`./data/score.yaml`
```shell
train: ./dataset/score/images/train # train images
val: ./dataset/score/images/val # val images
#test: ./dataset/score/images/test # test images (optional)# Classes
nc: 4 # number of classes
names: ['person','cat','dog','horse'] # class names
```ii.模型结构的配置:`./cfg/training/yolov7_score.yaml`
```shell
# parameters
nc: 4 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple# anchors
anchors:
- [12,16, 19,36, 40,28] # P3/8
- [36,75, 76,55, 72,146] # P4/16
- [142,110, 192,243, 459,401] # P5/32...
```
### 4.模型训练
```shell
python3 train.py --workers 8 --device 0 --batch-size 32 --data data/score.yaml --img 640 640 --cfg cfg/training/yolov7_score.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml# 一机多卡
python3 -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/score.yaml --img 640 640 --cfg cfg/training/yolov7_score.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml```
### 5.模型评估
```shell
python3 test.py --data data/score.yaml --img 640 --batch 32 --conf 0.001 --iou 0.45 --device 0 --weights ./runs/train/yolov7/weights/last.pt --name yolov7_640_val```
### 6.模型推断
```shell
python3 inference.py```
推断效果如下:
| | | |
| :-----------------------------: | :------------------------------: | :------------------------------: |
| | | |### 7.TensorRT 模型加速
我们实现了端到端的TensorRT模型加速,将NMS通过Plugin放入TensorRT Engine中。
1. YOLOv7转ONNX
注意:如果直接转ONNX会出现`scatterND`节点,可以做如下修改
```shell
python3 ./models/export.py --weights ./runs/train/yolov7/weights/last.pt --img-size 640 640 --grid```
1. YOLOv7的前处理
YOLOv6, YOLOv7的前处理和YOLOv5是相同的。
其C++的实现如下:
```c++
void preprocess(cv::Mat& img, float data[]) {
int w, h, x, y;
float r_w = INPUT_W / (img.cols*1.0);
float r_h = INPUT_H / (img.rows*1.0);
if (r_h > r_w) {
w = INPUT_W;
h = r_w * img.rows;
x = 0;
y = (INPUT_H - h) / 2;
}
else {
w = r_h * img.cols;
h = INPUT_H;
x = (INPUT_W - w) / 2;
y = 0;
}
cv::Mat re(h, w, CV_8UC3);
cv::resize(img, re, re.size(), 0, 0, cv::INTER_LINEAR);
//cudaResize(img, re);
cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(114, 114, 114));
re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));int i = 0;
for (int row = 0; row < INPUT_H; ++row) {
uchar* uc_pixel = out.data + row * out.step;
for (int col = 0; col < INPUT_W; ++col) {
data[i] = (float)uc_pixel[2] / 255.0;
data[i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
data[i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
uc_pixel += 3;
++i;
}
}}
```
3. YOLOv7的后处理
不难发现,YOLOv5, YOLOv6, YOLOv7的后处理基本是完全相同的,TensorRT后处理的代码基本可以复用
增加后处理和NMS节点:
```shell
python tensorrt/yolov7_add_postprocess.py
python tensorrt/yolov7_add_nms.py```
onnx中增加了如下节点:
4. TRT序列化Engine
```shell
trtexec --onnx=last_1_nms.onnx --saveEngine=yolov7.engine --workspace=3000 --verbose
```5. `VS2017`下编译运行`./tensorrt/yolov7`
| | | |
| :-----------------------------: | :------------------------------: | :------------------------------: |
| | | |