Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition
Transformer models from BERT to GPT-4, environments from Hugging Face to OpenAI. Fine-tuning, training, and prompt engineering examples. A bonus section with ChatGPT, GPT-3.5-turbo, GPT-4, and DALL-E including jump starting GPT-4, speech-to-text, text-to-speech, text to image generation with DALL-E, Google Cloud AI,HuggingGPT, and more
https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition
bert chatgpt chatgpt-api dall-e dall-e-api deep-learning gpt-3-5-turbo gpt-4 gpt-4-api huggingface-transformers machine-learning natural-language-processing nlp openai python pytorch roberta-model transformers trax
Last synced: 3 months ago
JSON representation
Transformer models from BERT to GPT-4, environments from Hugging Face to OpenAI. Fine-tuning, training, and prompt engineering examples. A bonus section with ChatGPT, GPT-3.5-turbo, GPT-4, and DALL-E including jump starting GPT-4, speech-to-text, text-to-speech, text to image generation with DALL-E, Google Cloud AI,HuggingGPT, and more
- Host: GitHub
- URL: https://github.com/Denis2054/Transformers-for-NLP-2nd-Edition
- Owner: Denis2054
- License: mit
- Created: 2022-03-03T16:18:09.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2024-01-04T09:54:36.000Z (about 1 year ago)
- Last Synced: 2024-08-03T01:21:06.611Z (6 months ago)
- Topics: bert, chatgpt, chatgpt-api, dall-e, dall-e-api, deep-learning, gpt-3-5-turbo, gpt-4, gpt-4-api, huggingface-transformers, machine-learning, natural-language-processing, nlp, openai, python, pytorch, roberta-model, transformers, trax
- Language: Jupyter Notebook
- Homepage: https://denis2054.github.io/Transformers-for-NLP-2nd-Edition/
- Size: 90.2 MB
- Stars: 759
- Watchers: 22
- Forks: 279
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-chatgpt - Denis2054/Transformers-for-NLP-2nd-Edition - Transformer models from BERT to GPT-4, with examples and guides for fine-tuning, training, and prompt engineering. (Documentation and examples / Lists, Guides and examples)