Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/DensoITLab/TeachAugment
Official Implementation of TeachAugment: Data Augmentation Optimization Using Teacher Knowledge (CVPR2022, Oral)
https://github.com/DensoITLab/TeachAugment
classification cvpr2022 deeplearning pytorch
Last synced: 2 months ago
JSON representation
Official Implementation of TeachAugment: Data Augmentation Optimization Using Teacher Knowledge (CVPR2022, Oral)
- Host: GitHub
- URL: https://github.com/DensoITLab/TeachAugment
- Owner: DensoITLab
- License: other
- Created: 2021-11-17T07:26:12.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-06-06T07:32:19.000Z (over 2 years ago)
- Last Synced: 2024-08-01T05:12:31.450Z (5 months ago)
- Topics: classification, cvpr2022, deeplearning, pytorch
- Language: Python
- Homepage:
- Size: 29.3 KB
- Stars: 66
- Watchers: 5
- Forks: 11
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# TeachAugment: Data Augmentation Optimization Using Teacher Knowledge (CVPR2022, Oral)
Official Implementation of TeachAugment in PyTorch.
arXiv: https://arxiv.org/abs/2202.12513## Requirements
- PyTorch >= 1.9
- Torchvision >= 0.10## Run
Training with single GPU
```
python main.py --yaml ./config/$DATASET_NAME/$MODEL
```Training with single node multi-GPU
```
python -m torch.distributed.launch --nproc_per_node=$N_GPUS main.py \
--yaml ./config/$DATASET_NAME/$MODEL --dist
```Examples
```
# Training WRN-28-10 on CIFAR-100
python main.py --yaml ./config/CIFAR100/wrn-28-10.yaml
# Training ResNet-50 on ImageNet with 4 GPUs
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--yaml ./config/ImageNet/resnet50.yaml --dist
```
If the computational resources are limited, please try `--save_memory` option.## Citation
If you find our project useful in your research, please cite it as follows:
```
@InProceedings{Suzuki_2022_CVPR,
author = {Suzuki, Teppei},
title = {TeachAugment: Data Augmentation Optimization Using Teacher Knowledge},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10904-10914}
}
```## Acknowledgement
The files in ```./lib/models``` and the code in ```./lib/augmentation/imagenet_augmentation.py``` are based on the implementation of [Fast AutoAugment](https://github.com/kakaobrain/fast-autoaugment).