Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/DistrictDataLabs/yellowbrick
Visual analysis and diagnostic tools to facilitate machine learning model selection.
https://github.com/DistrictDataLabs/yellowbrick
anaconda estimator machine-learning matplotlib model-selection python scikit-learn visual-analysis visualization visualizer
Last synced: 3 months ago
JSON representation
Visual analysis and diagnostic tools to facilitate machine learning model selection.
- Host: GitHub
- URL: https://github.com/DistrictDataLabs/yellowbrick
- Owner: DistrictDataLabs
- License: apache-2.0
- Created: 2016-05-18T14:12:17.000Z (over 8 years ago)
- Default Branch: develop
- Last Pushed: 2023-07-29T21:28:21.000Z (over 1 year ago)
- Last Synced: 2024-04-16T03:18:43.197Z (9 months ago)
- Topics: anaconda, estimator, machine-learning, matplotlib, model-selection, python, scikit-learn, visual-analysis, visualization, visualizer
- Language: Python
- Homepage: http://www.scikit-yb.org/
- Size: 77 MB
- Stars: 4,194
- Watchers: 104
- Forks: 550
- Open Issues: 94
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE.txt
- Code of conduct: docs/code_of_conduct.rst
Awesome Lists containing this project
- awesome-production-machine-learning - yellowbrick - yellowbrick is a matplotlib-based model evaluation plots for scikit-learn and other machine learning libraries. (Industrial Strength Visualisation libraries)
- Awesome-AIML-Data-Ops - yellowbrick - yellowbrick is a matplotlib-based model evaluation plots for scikit-learn and other machine learning libraries. (Visualisation libraries)
- awesome-list - Yellowbrick - Visual analysis and diagnostic tools to facilitate machine learning model selection. (Machine Learning Framework / Experiment Management)
- awesome-python-machine-learning-resources - GitHub - 11% open · ⏱️ 21.08.2022): (模型的可解释性)
- awesome-production-machine-learning - yellowbrick - yellowbrick is a matplotlib-based model evaluation plots for scikit-learn and other machine learning libraries. (Optimized Computation)
- StarryDivineSky - DistrictDataLabs/yellowbrick - learnAPI 提供可视化诊断工具(称为“可视化器”),帮助用户直观地了解模型选择过程。Yellowbrick 将 scikit-learn 与 matplotlib 相结合,生成可视化结果,帮助用户更好地理解机器学习工作流程。Yellowbrick 支持 Python 3.4 及更高版本,依赖 scikit-learn 和 matplotlib,可以通过 pip 或 conda 安装。用户可以使用 Yellowbrick的可视化器来分析特征、评估模型性能等。 (其他_机器学习与深度学习)