Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Draichi/cryptocurrency_prediction

:zap: :zap: π˜‹π˜¦π˜¦π˜± π˜™π˜“ 𝘈𝘭𝘨𝘰𝘡𝘳𝘒π˜₯π˜ͺ𝘯𝘨 𝘸π˜ͺ𝘡𝘩 π˜™π˜’π˜Ί π˜ˆπ˜—π˜
https://github.com/Draichi/cryptocurrency_prediction

algotrading bot ray reinforcement-learning-bot rl rllib trading trading-bot

Last synced: about 1 month ago
JSON representation

:zap: :zap: π˜‹π˜¦π˜¦π˜± π˜™π˜“ 𝘈𝘭𝘨𝘰𝘡𝘳𝘒π˜₯π˜ͺ𝘯𝘨 𝘸π˜ͺ𝘡𝘩 π˜™π˜’π˜Ί π˜ˆπ˜—π˜

Awesome Lists containing this project

README

        

# T-1000 Advanced Prototype

![ubuntu](https://img.shields.io/badge/ubuntu-supported-000.svg?colorA=00cc25&longCache=true&style=for-the-badge "ubuntu")

![ubuntu](https://img.shields.io/badge/tested_on-ubuntu-000.svg?colorA=00cc25&longCache=true&style=for-the-badge "ubuntu")

![OS](https://img.shields.io/badge/OS-unkown-000.svg?colorA=&longCache=true&style=for-the-badge "OS")

![windows](https://img.shields.io/badge/windows-not_supported-000.svg?colorA=d11431&longCache=true&style=for-the-badge "windows")

[![Codacy Badge](https://api.codacy.com/project/badge/Grade/ebdf89dcba744a3c8aafdda210d3aeb6)](https://app.codacy.com/app/Draichi/cryptocurrency_prediction?utm_source=github.com&utm_medium=referral&utm_content=Draichi/cryptocurrency_prediction&utm_campaign=Badge_Grade_Dashboard)

![gif](assets/t-1000.gif)

Deep reinforcement learning multi-agent algorithmic trading framework that learns to trade from experience and then evaluate with brand new data

* * *

## Prerequisites

- [Miniconda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html) or Anaconda

An API Key on [CryptoCompare](https://min-api.cryptocompare.com/)

* * *

## Setup

### Ubuntu

```sh
# paste your API Key on .env
cp .env.example .env
# make sure you have these installed
sudo apt-get install gcc g++ build-essential python-dev python3-dev -y
# create env
conda env create -f t-1000.yml
# activate it
conda activate t-1000
```

* * *

## Usage

### On command line

```sh
# to see all arguments available
# $ python main.py --help

# to train
python main.py -a btc eth bnb -c usd

# to test
python main.py /
--checkpoint_path results/t-1000/model-hash/checkpoint_750/checkpoint-750
```

### On your own file

```py
# instatiate the environment
T_1000 = CreateEnv(assets=['OMG','BTC','ETH'],
currency='USDT',
granularity='day',
datapoints=600)

# define the hyperparams to train
T_1000.train(timesteps=5e4,
checkpoint_freq=10,
lr_schedule=[
[
[0, 7e-5], # [timestep, lr]
[100, 7e-6],
],
[
[0, 6e-5],
[100, 6e-6],
]
],
algo='PPO')

```

Once you have a sattisfatory reward_mean benchmark you can see how it performs with never seen data

```py
# same environment
T_1000 = CreateEnv(assets=['OMG','BTC','ETH'],
currency='USDT',
granularity='day',
datapoints=600)

# checkpoint are saved in /results
# it will automatically use a different time period from trainnig to backtest
T_1000.backtest(checkpoint_path='path/to/checkpoint_file/checkpoint-400')
```

* * *

## Features

- state of the art [agents](https://ray.readthedocs.io/en/latest/rllib-algorithms.html)
- hyperparam grid search
- multi agent parallelization
- learning rate schedule
- result [analysis](https://ray.readthedocs.io/en/latest/tune-package-ref.html#ray.tune.Analysis)

> "It just needs to touch something to mimic it." - [Sarah Connor, about the T-1000](https://terminator.fandom.com/wiki/T-1000)

* * *

## Monitoring

Some nice tools to keep an eye while your agent train are (of course) `tensorboard`, `gpustat` and `htop`

```sh
# from the project home folder
$ tensorboard --logdir=models

# show how your gpu is going
$ gpustat -i

# show how your cpu and ram are going
$ htop
```
* * *

## Credits

- [Papers](https://github.com/Draichi/Portfolio-Management-list/blob/master/README.md)
- [Analyzing cryptocurrency markets using python](https://blog.patricktriest.com/analyzing-cryptocurrencies-python/)
- [Q-trader](https://github.com/edwardhdlu/q-trader)
- [Trading-Gym](https://github.com/thedimlebowski/Trading-Gym)
- [Tensor Trade](https://github.com/notadamking/tensortrade)

* * *

## To do

- [ ] Bind the agent's output with an exchange place order API