Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/DwangoMediaVillage/keras_compressor

Model Compression CLI Tool for Keras.
https://github.com/DwangoMediaVillage/keras_compressor

deep-learning keras machine-learning model-compression

Last synced: about 2 months ago
JSON representation

Model Compression CLI Tool for Keras.

Awesome Lists containing this project

README

        

# keras_compressor
Model compression CLI tool for [keras](https://github.com/fchollet/keras).

# How to use it

## Requirements
- Python 3.5, 3.6
- Keras
- We tested on Keras 2.0.3 (TensorFlow backend)

## Install
```
$ git clone ${this repository}
$ cd ./keras_compressor
$ pip install .
```

## Compress
Simple example:
```
$ keras-compressor.py model.h5 compressed.h5
```

With accuracy parameter `error`:
```
$ keras-compressor.py --error 0.001 model.h5 compressed.h5
```

## Help
```
$ keras-compressor.py --help [impl_keras_compressor:keras_compressor]
Using TensorFlow backend.
usage: keras-compressor.py [-h] [--error 0.1]
[--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}]
model.h5 compressed.h5

compress keras model

positional arguments:
model.h5 target model, whose loss is specified by
`model.compile()`.
compressed.h5 compressed model path

optional arguments:
-h, --help show this help message and exit
--error 0.1 layer-wise acceptable error. If this value is larger,
compressed model will be less accurate and achieve
better compression rate. Default: 0.1
--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}
log level. Default: INFO
```

# How compress it
- low-rank approximation
- with SVD (matrix)
- with Tucker (tensor)

# Examples
In example directory, you will find model compression of VGG-like models using MNIST and CIFAR10 dataset.

```console
$ cd ./keras_compressor/example/mnist/

$ python train.py
-> outputs non-compressed model `model_raw.h5`

$ python compress.py
-> outputs compressed model `model_compressed.h5` from `model_raw.h5`

$ python finetune.py
-> outputs finetuned and compressed model `model_finetuned.h5` from `model_compressed.h5`

$ python evaluate.py model_raw.h5
$ python evaluate.py model_compressed.h5
$ python evaluate.py model_finetuned.h5
-> output test accuracy and the number of model parameters
```