An open API service indexing awesome lists of open source software.

https://github.com/EIDOSLAB/UNITOPATHO

Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198
https://github.com/EIDOSLAB/UNITOPATHO

cancer data health histopathological-image histopathology histopathology-images medical-image-processing medical-images neural-networks

Last synced: 14 days ago
JSON representation

Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198

Awesome Lists containing this project

README

        

# UNITOPATHO
## A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia Grading

Carlo Alberto Barbano1, Daniele Perlo1, Enzo Tartaglione1, Attilio Fiandrotti1, Luca Bertero2, Paola Cassoni2, Marco Grangetto1
| [[pdf](https://ieeexplore.ieee.org/document/9506198)]

1University of Turin, Computer Science dept.

2University of Turin, Medical Sciences dept.

![UniToPatho](assets/unitopatho.png)

*UniToPatho* is an annotated dataset of **9536** hematoxylin and eosin stained patches extracted from 292 whole-slide images, meant for training deep neural networks for colorectal polyps classification and adenomas grading. The slides are acquired through a Hamamatsu Nanozoomer S210 scanner at 20× magnification (0.4415 μm/px). Each slide belongs to a different patient and is annotated by expert pathologists, according to six classes as follows:

- **NORM** - Normal tissue;
- **HP** - Hyperplastic Polyp;
- **TA.HG** - Tubular Adenoma, High-Grade dysplasia;
- **TA.LG** - Tubular Adenoma, Low-Grade dysplasia;
- **TVA.HG** - Tubulo-Villous Adenoma, High-Grade dysplasia;
- **TVA.LG** - Tubulo-Villous Adenoma, Low-Grade dysplasia.

## Downloading the dataset

You can download UniToPatho from [IEEE-DataPort](https://ieee-dataport.org/open-access/unitopatho)

## Dataloader and example usage

We provide a [PyTorch compatible dataset class](/unitopatho.py) and [ECVL compatible dataloader](/unitopatho_ecvl.py).
For example usage see [Example.ipynb](/Example.ipynb)

## Citation

If you use this dataset, please make sure to cite the [related work](https://arxiv.org/abs/2101.09991):

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/unitopatho-a-labeled-histopathological/colorectal-polyps-characterization-on)](https://paperswithcode.com/sota/colorectal-polyps-characterization-on?p=unitopatho-a-labeled-histopathological)

```
@INPROCEEDINGS{barbano2021unitopatho,
author={Barbano, Carlo Alberto and Perlo, Daniele and Tartaglione, Enzo and Fiandrotti, Attilio and Bertero, Luca and Cassoni, Paola and Grangetto, Marco},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
title={Unitopatho, A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia Grading},
year={2021},
volume={},
number={},
pages={76-80},
doi={10.1109/ICIP42928.2021.9506198}
}
```