https://github.com/EIDOSLAB/UNITOPATHO
Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198
https://github.com/EIDOSLAB/UNITOPATHO
cancer data health histopathological-image histopathology histopathology-images medical-image-processing medical-images neural-networks
Last synced: 14 days ago
JSON representation
Dataset of 9536 H&E-stained patches for colorectal polyps classification and adenomas grading | ICIP21 https://doi.org/10.1109/ICIP42928.2021.9506198
- Host: GitHub
- URL: https://github.com/EIDOSLAB/UNITOPATHO
- Owner: EIDOSLAB
- License: mit
- Created: 2021-02-09T10:09:02.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2023-05-18T14:53:57.000Z (about 2 years ago)
- Last Synced: 2024-12-08T05:03:09.097Z (5 months ago)
- Topics: cancer, data, health, histopathological-image, histopathology, histopathology-images, medical-image-processing, medical-images, neural-networks
- Language: Jupyter Notebook
- Homepage: https://ieee-dataport.org/open-access/unitopatho
- Size: 3.18 MB
- Stars: 31
- Watchers: 3
- Forks: 5
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-pathology - UNITOPATHO - A labeled histopathological dataset for colorectal polyps classification and adenoma dysplasia grading. (Data / Datasets)
README
# UNITOPATHO
## A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia GradingCarlo Alberto Barbano1, Daniele Perlo1, Enzo Tartaglione1, Attilio Fiandrotti1, Luca Bertero2, Paola Cassoni2, Marco Grangetto1
| [[pdf](https://ieeexplore.ieee.org/document/9506198)]1University of Turin, Computer Science dept.
2University of Turin, Medical Sciences dept.
*UniToPatho* is an annotated dataset of **9536** hematoxylin and eosin stained patches extracted from 292 whole-slide images, meant for training deep neural networks for colorectal polyps classification and adenomas grading. The slides are acquired through a Hamamatsu Nanozoomer S210 scanner at 20× magnification (0.4415 μm/px). Each slide belongs to a different patient and is annotated by expert pathologists, according to six classes as follows:
- **NORM** - Normal tissue;
- **HP** - Hyperplastic Polyp;
- **TA.HG** - Tubular Adenoma, High-Grade dysplasia;
- **TA.LG** - Tubular Adenoma, Low-Grade dysplasia;
- **TVA.HG** - Tubulo-Villous Adenoma, High-Grade dysplasia;
- **TVA.LG** - Tubulo-Villous Adenoma, Low-Grade dysplasia.## Downloading the dataset
You can download UniToPatho from [IEEE-DataPort](https://ieee-dataport.org/open-access/unitopatho)
## Dataloader and example usage
We provide a [PyTorch compatible dataset class](/unitopatho.py) and [ECVL compatible dataloader](/unitopatho_ecvl.py).
For example usage see [Example.ipynb](/Example.ipynb)## Citation
If you use this dataset, please make sure to cite the [related work](https://arxiv.org/abs/2101.09991):
[](https://paperswithcode.com/sota/colorectal-polyps-characterization-on?p=unitopatho-a-labeled-histopathological)
```
@INPROCEEDINGS{barbano2021unitopatho,
author={Barbano, Carlo Alberto and Perlo, Daniele and Tartaglione, Enzo and Fiandrotti, Attilio and Bertero, Luca and Cassoni, Paola and Grangetto, Marco},
booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
title={Unitopatho, A Labeled Histopathological Dataset for Colorectal Polyps Classification and Adenoma Dysplasia Grading},
year={2021},
volume={},
number={},
pages={76-80},
doi={10.1109/ICIP42928.2021.9506198}
}
```