Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/EZ-hwh/AutoScraper

Official implement of paper "AutoCrawler: A Progressive Understanding Web Agent for Web Crawler Generation"
https://github.com/EZ-hwh/AutoScraper

webscraping

Last synced: 29 days ago
JSON representation

Official implement of paper "AutoCrawler: A Progressive Understanding Web Agent for Web Crawler Generation"

Awesome Lists containing this project

README

        

# AutoScraper





This is the official code for paper *"AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation"*.

![](assets/Framework.png)
## Setup
```bash
# Clone the AutoScraper repository
git clone https://github.com/EZ-hwh/AutoCrawler

# Change directory into the cloned repository
cd AutoCrawler

# Optional: Create a Conda environment for AutoScraper
# conda create -n autocrawler python=3.9
# conda activate autocrawler

# Install required dependencies
pip install -r requirements.txt
```

## TODOs

- [x] Public the experimental code.
- [ ] Adapt AutoScraper for real-world websites.
- [ ] Website for showing our demo and testing.

## Experiments
If you want to reproduce the result we report in paper.

```bash
# Generate scraper with AutoScraper
python crawler_generation.py \
--pattern reflexion \
--dataset swde \
--model ChatGPT \
--seed_website 3 \
--save_name ChatGPT \
--overwrite False

# Extract information with scraper
python crawler_extraction.py \
--pattern autocrawler \
--dataset swde \
--model GPT4

# Evaluate the extraction on SWDE dataset
python run_swde/evaluate.py \
--model GPT4 \
--pattern autocrawler
```

## 📝 Citation
If you find this work useful, please consider citing our work:
```
@misc{huang2024autoscraperprogressiveunderstandingweb,
title={AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation},
author={Wenhao Huang and Zhouhong Gu and Chenghao Peng and Zhixu Li and Jiaqing Liang and Yanghua Xiao and Liqian Wen and Zulong Chen},
year={2024},
eprint={2404.12753},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2404.12753},
}
```