Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/EdiGlacUQ/fenics_ice


https://github.com/EdiGlacUQ/fenics_ice

Last synced: about 1 month ago
JSON representation

Awesome Lists containing this project

README

        

FEniCS_ice
----------

**FEniCS_ice is a finite element model framework,
that quantifies the initialization uncertainty
for time-dependent ice sheet models.**

FEniCS_ice is a Python code intended for Bayesian quantification of uncertainty
of large-scale parameter sets within an ice-sheet flow model.
The implementation consist of a combination of data assimilation and bayesian inference.
This involves 1) inferring unobserved model parameters from data; 2) determining
the uncertainty of the inferred model parameters; 3) running the forward model to make a
prediction about a quantity of interest (e.g. ice mass loss); 4) Propagating the uncertainty
in the inferred parameters to the model prediction.

The code contains a dynamic solver for ice-sheet flow which implements the
Shallow-Shelf Approximation (`MacAyeal et al, 1989.`_)
and approximates parameter covariance using a low-rank approximation to
the inverse of the cost-function Hessian. The code uses Algorithmic Differentiation
to find sensitivity of time-evolving Quantities of Interest to parameter sets,
allowing projections of parameter uncertainty forward in time.

.. _MacAyeal et al, 1989.: https://doi.org/10.1029/JB094iB04p04071

Installation, documentation
---------------------------

The documentation website is currently in construction,
but there is a `User guide`_ and a basic installation info below.

.. _User guide: https://github.com/EdiGlacUQ/fenics_ice/tree/main/user_guide

Conda installation:
------------------

1. Clone the repository::

git clone https://github.com/EdiGlacUQ/fenics_ice.git

2. To install via `Conda`_ use `install.sh`_, this script will install and test FEniCS_ice.
Be sure to set **CONDA_HOME** before installing, and add the line below to your .bashrc::

export FENICS_ICE_BASE_DIR="/path/to/fenics_ice/repo"

3. Run install.sh.

4. Run all serial tests::

pytest -v --order-scope=module --color=yes

5. Run all parallel tests::

mpirun -n 2 pytest -v --order-scope=module --color=yes

Install via Mamba:
------------------

1. Clone the repository and create `Mamba`_ environment::

cd fenics_ice
mamba env create -f environment.yml
pip install -e .

Make sure the environment "fenics_ice" is activated.

2. Install `tlm_adjoint`_::

git clone https://github.com/EdiGlacUQ/tlm_adjoint.git
cd tlm_adjoint
pip install -e .

3. Run all serial tests::

pytest -v --order-scope=module --color=yes

4. Run all parallel tests::

mpirun -n 2 pytest -v --order-scope=module --color=yes

Code source
------------

- View the source code `on GitHub`_.
- Report bugs or share your ideas on the `issue tracker`_.
- Improve the model by submitting a `pull request`_.

.. _on GitHub: https://github.com/EdiGlacUQ/fenics_ice
.. _issue tracker: https://github.com/EdiGlacUQ/fenics_ice/issues
.. _pull request: https://github.com/EdiGlacUQ/fenics_ice/pulls

.. _Conda: https://docs.conda.io/en/latest/miniconda.html
.. _install.sh: https://github.com/EdiGlacUQ/fenics_ice/blob/main/install.sh
.. _Mamba: https://mamba.readthedocs.io/en/latest/installation.html#micromamba
.. _tlm_adjoint: https://github.com/EdiGlacUQ/tlm_adjoint

About
-----
:Version:
.. image:: https://img.shields.io/badge/python-3.8%2B-blue
:target: https://www.python.org/
:alt: Pypi version

:Citation:
.. image:: https://img.shields.io/badge/Citation-GMD%20paper-orange.svg
:target: https://doi.org/10.5194/gmd-14-5843-2021
:alt: GMD Paper

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5153231.svg
:target: https://zenodo.org/record/5153231
:alt: Zenodo

:Tests:
.. image:: https://img.shields.io/badge/test-passing-green
:target: https://github.com/EdiGlacUQ/fenics_ice/actions/workflows/test-fice.yml
:alt: Linux build status

.. image::
:target:
:alt: Documentation in construction

:License:
.. image:: https://img.shields.io/badge/license-GNU--LGPL--v3-green
:target: https://github.com/EdiGlacUQ/fenics_ice/blob/main/COPYING
:alt: GNU LGPL version 3

:Authors:

See the `link`_ for a list of all contributors.

.. _link: https://github.com/EdiGlacUQ/fenics_ice/people