Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Ehzoahis/DEReD
The Offical Codebase for Fully Self-Supervised Depth Estimation from Defocus Clue
https://github.com/Ehzoahis/DEReD
Last synced: 3 months ago
JSON representation
The Offical Codebase for Fully Self-Supervised Depth Estimation from Defocus Clue
- Host: GitHub
- URL: https://github.com/Ehzoahis/DEReD
- Owner: Ehzoahis
- Created: 2023-02-15T07:09:53.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-06-03T04:48:43.000Z (over 1 year ago)
- Last Synced: 2024-05-28T13:19:35.993Z (5 months ago)
- Language: Python
- Homepage: https://ehzoahis.github.io/DEReD/
- Size: 49.9 MB
- Stars: 37
- Watchers: 2
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Monocular-Depth - Fully Self-Supervised Depth Estimation from Defocus Clue
README
# DEReD (Depth Estimation via Reconstucting Defocus Image)
[![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://ehzoahis.github.io/DEReD)
[![arXiv](https://img.shields.io/badge/arXiv-2303.11791-b31b1b.svg)](https://arxiv.org/pdf/2303.10752.pdf)Official codes of CVPR 2023 [Paper](https://arxiv.org/pdf/2303.10752.pdf) | _Fully Self-Supervised Depth Estimation from Defocus Clue_
## Prepreation
### Environment
Create a new environment and install dependencies with `requirement.txt`:
```shell
conda create -n deredconda activate dered
conda install --file requirements.txt
python gauss_psf/setup.py install
```### Data
The generation code for NYUv2 Focal Stack dataset is provided.
The generation code for DefocusNet can be found [here](https://github.com/dvl-tum/defocus-net).
### Weight
You can download the model weights trained on NYUv2 Focal Stack from [here](https://drive.google.com/file/d/1LQUt7Lo6KPKb0OsBETkvxeujOVdqOGjh/view?usp=share_link).## Usage
### Train
```shell
python scripts/train.py --data_path [path/to/dataset] --dataset [Dataset] --recon_all \
-N [experiment_name] --use_cuda -E 1000 --BS 32 --save_checkpoint --save_best --save_last \
--sm_loss_beta 2.5 --verbose --recon_loss_lambda 1e3 --aif_blur_loss_lambda 10 \
--blur_loss_lambda 1e1 --sm_loss_lambda 1e1 --log --vis
```### Evaluation
```shell
python scripts/train.py --data_path [path/to/dataset] --dataset [Dataset] --recon_all \
-N [experiment_name] --use_cuda --BS 32 --save_best --verbose --eval
```## Acknowledgement
Parts of the code are developed from [DefocusNet](https://github.com/dvl-tum/defocus-net) and [UnsupervisedDepthFromFocus](https://github.com/shirgur/UnsupervisedDepthFromFocus).## Citation
```bibtex
@article{si2023fully,
title={Fully Self-Supervised Depth Estimation from Defocus Clue},
author={Si, Haozhe and Zhao, Bin and Wang, Dong and Gao, Yupeng and Chen, Mulin and Wang, Zhigang and Li, Xuelong},
journal={arXiv preprint arXiv:2303.10752},
year={2023}
}
```## Contact Authors
[Haozhe Si](mailto:[email protected]), [Bin Zhao](mailto:[email protected]), [Dong Wang](mailto:[email protected]), [Xuelong Li](mailto:[email protected])