Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Evref-BL/Jira-Pharo-API

Analyze data from Jira
https://github.com/Evref-BL/Jira-Pharo-API

Last synced: about 2 months ago
JSON representation

Analyze data from Jira

Awesome Lists containing this project

README

        

# Jira-Pharo-API

[![Continuous](https://github.com/Evref-BL/Jira-Pharo-API/actions/workflows/continuous.yml/badge.svg)](https://github.com/Evref-BL/Jira-Pharo-API/actions/workflows/continuous.yml)
[![Coverage Status](https://coveralls.io/repos/github/Evref-BL/Jira-Pharo-API/badge.svg?branch=main)](https://coveralls.io/github/Evref-BL/Jira-Pharo-API?branch=main)

This is a client for the [Jira REST API](https://developer.atlassian.com/cloud/jira/platform/rest/v2/intro/#about).

## Installation

```st
Metacello new
githubUser: 'Evref-BL' project: 'Jira-Pharo-API' commitish: 'main' path: 'src';
baseline: 'JiraPharoAPI';
load
```

## Connect the API to Jira

The first step before querying is to connect to the Jira API.

On the official atlassian Jira, perform the following script:

```smalltalk
jpAPI := JiraPharoAPI new.
jpAPI endpoint: ''.
jpAPI basePath: '/rest/api/latest/'.
jpAPI beHttps.

jpAPI user: ''.
jpAPI apiToken: ''.
```

If you still have a olf self-hosted Jira, you might want to use the following script.

```smalltalk
jpAPI := JiraPharoAPI new.
jpAPI endpoint: ''.
jpAPI basePath: '/rest/api/latest/'.
jpAPI beHttps.
jpAPI bearerToken: ''.
```

## Example with Moose

This project comes with an integration to the Moose environment.
It comes with a specific importer for this purpose that simply the data analysis.

### Import the issues assigned to a user in moose

```st
jpImporter := JiraPharoImporter new
model: JPModel new;
api: jpAPI;
yourself.

jpImporter importAllIssuesOf: ''.
jpImporter model
```

## Example API only

### Get information about one issue

```smalltalk
jpAPI issue: ''.
```

### Search issue API

We define the API to search issues using the [JQL](https://confluence.atlassian.com/x/egORLQ) query language of Atlassian.
We propose here some example but you can do a lot more.

#### Get all issues of a project after a date

```smalltalk
issues := OrderedCollection new.
tmp := jpAPI searchIssueWithExpand: nil fields: {'*navigable' . 'created'} fieldsByKeys: nil jql: 'project = and created > ''2023-01-01''' maxResults: 100 startAt: 0.

issues addAll: tmp issues.
[tmp issues isNotEmpty ] whileTrue: [

tmp := jpAPI searchIssueWithExpand: nil fields: {'*navigable' . 'created'} fieldsByKeys: nil jql: 'project = and created > ''2023-01-01''' maxResults: 100 startAt: issues size.
issues addAll: tmp issues.
].

allJiraIssues := issues
```

#### Search all issues assigned to a user

```smalltalk
issues := OrderedCollection new.
tmp := jpAPI searchIssueWithExpand: nil fields: {'*navigable' . 'created'} fieldsByKeys: nil jql: 'assignee = "[email protected]"' maxResults: 100 startAt: 0.

issues addAll: tmp issues.
[tmp issues isNotEmpty ] whileTrue: [

tmp := jpAPI searchIssueWithExpand: nil fields: {'*navigable' . 'created'} fieldsByKeys: nil jql: 'assignee = "[email protected]"' maxResults: 100 startAt: issues size.
issues addAll: tmp issues.
].

allJiraIssues := issues
```

#### Compute average time spent on jira issues by month for a user

```smalltalk
user := ''.
jqlQuery := String streamContents: [ :stream |
stream << 'assignee = "'.
stream << user.
stream << '"'
].

issues := OrderedCollection new.
tmp := jpAPI searchIssueWithExpand: nil fields: {'*all'} fieldsByKeys: nil jql: jqlQuery maxResults: 100 startAt: 0.

issues addAll: tmp issues.
[tmp issues isNotEmpty ] whileTrue: [

tmp := jpAPI searchIssueWithExpand: nil fields: {'*all'} fieldsByKeys: nil jql: jqlQuery maxResults: 100 startAt: issues size.
issues addAll: tmp issues.
].

allJiraIssues := issues.

jiraWithTime := allJiraIssues reject: [ :jiraIssue | jiraIssue timespent isNil ].
grouped := jiraWithTime groupedBy: [ :jiraIssue | jiraIssue created month ].
computedMean := OrderedDictionary new.
grouped keysDo: [ :key | computedMean at: key put: ((grouped at: key) sum: #timespent) / (grouped at: key) size ].

"To get a visualization"
c := RSCompositeChart new.
c add: (RSBarPlot new y: (computedMean values collect: #asSeconds)).
c horizontalTick fromNames: computedMean orderedKeys;
useDiagonalLabel.
c verticalTick labelConversion: [ :v | v seconds ].
c xlabel: 'Month'.
c ylabel: 'Time spent'.
c title: 'Mean time spend by dev on jira issue'.
c
```

Another option is to assign a jira ticket to the first month work has been log on it

```smalltalk
jiraWithTime := allJiraIssues reject: [ :jiraIssue | jiraIssue timespent isNil ].
grouped := jiraWithTime groupedBy: [ :jiraIssue | jiraIssue worklogs first created asDate month ].
sortedGrouped := (grouped associations asOrderedCollection sort: [:a :b | a key < b key]) asOrderedDictionary .
computedMean := OrderedDictionary new.
sortedGrouped keysDo: [ :key | computedMean at: key put: ((grouped at: key) sum: #timespent) / (grouped at: key) size ].

c := RSCompositeChart new.
c add: (RSBarPlot new y: (computedMean values collect: #asSeconds)).
c horizontalTick fromNames: computedMean orderedKeys;
useDiagonalLabel.
c verticalTick labelConversion: [ :v | v seconds ].
c xlabel: 'Month'.
c ylabel: 'Time spent'.
c title: 'Mean time spend by dev on jira issue'.
c
```