https://github.com/Farama-Foundation/Metaworld
Collections of robotics environments geared towards benchmarking multi-task and meta reinforcement learning
https://github.com/Farama-Foundation/Metaworld
benchmark-environments meta-rl mujoco multi-task
Last synced: 28 days ago
JSON representation
Collections of robotics environments geared towards benchmarking multi-task and meta reinforcement learning
- Host: GitHub
- URL: https://github.com/Farama-Foundation/Metaworld
- Owner: Farama-Foundation
- License: mit
- Created: 2019-09-09T19:00:02.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-08-18T08:55:50.000Z (8 months ago)
- Last Synced: 2024-10-29T15:34:47.073Z (6 months ago)
- Topics: benchmark-environments, meta-rl, mujoco, multi-task
- Language: Python
- Homepage: https://metaworld.farama.org/
- Size: 91.6 MB
- Stars: 1,262
- Watchers: 29
- Forks: 271
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-real-world-rl - RL Robotic Meta World - Robotic Manipulation Tasks - Real world examples regarding to Meta Learning. (Libraries)
- awesome-model-based-RL - Meta-World - py) (Papers / ICML 2023)
- awesome-decision-transformer - MetaWorld - deepmind/dm_control) (Papers / ICLR 2023)
- awesome-production-machine-learning - Meta-World - Foundation/Metaworld.svg?style=social) - Meta-World is an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. (Evaluation and Monitoring)