Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/FeliMe/brain_sas_baseline
Official implementation of the paper "Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI" accepted to the MICCAI 2021 BrainLes workshop
https://github.com/FeliMe/brain_sas_baseline
anomaly-detection anomaly-segmentation mri-brain
Last synced: 9 days ago
JSON representation
Official implementation of the paper "Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI" accepted to the MICCAI 2021 BrainLes workshop
- Host: GitHub
- URL: https://github.com/FeliMe/brain_sas_baseline
- Owner: FeliMe
- License: mit
- Created: 2021-04-15T06:59:59.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2021-10-13T07:27:51.000Z (about 3 years ago)
- Last Synced: 2024-07-31T20:43:13.032Z (3 months ago)
- Topics: anomaly-detection, anomaly-segmentation, mri-brain
- Language: Python
- Homepage:
- Size: 36.1 KB
- Stars: 10
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Semi-Supervised Anomaly Segmentation Baseline for Brain MRI
This repository contains the code for ["Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI"](https://arxiv.org/abs/2109.06023), accepted to the MICCAI 2021 BrainLes Workshop.
## Set-up
Clone the git project:
```
$ git clone https://github.com/FeliMe/brain_sas_baseline.git
```Create a virtual environment and install the requirements:
```
$ conda create -f environment.yml
```Activate the newly created environment:
```
$ conda activate anomaly_detection
```## Download ROBEX and SRI ATLAS
Download and install ROBEX from https://www.nitrc.org/projects/robex
Download the SRI ATLAS from https://www.nitrc.org/projects/sri24/ and place it into DATAROOT/BrainAtlases/## Download and pre-process Datasets
### BraTS
```
$ python download_data.py --dataset BraTS
$ python download_data.py --dataset BraTS --register
```### MSLUB
```
$ python download_data.py --dataset MSLUB
$ python download_data.py --dataset MSLUB --skull_strip
$ python download_data.py --dataset MSLUB --register
```### WMH
```
$ python download_data.py --dataset WMH
$ python download_data.py --dataset WMH --skull_strip
$ python download_data.py --dataset WMH --register
```### MSSEG2015
```
$ python download_data.py --dataset MSSEG2015
$ python download_data.py --dataset MSSEG2015 --register
```## Run the experiments (Here Experiment 1 from the paper on BraTS)
```
$ python baseline.py --test_ds BraTS --img_size 128 --slices_lower_upper 15 125
```