Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/FerdinaKusumah/face-recognition-webservice
Face recognition using python sanic
https://github.com/FerdinaKusumah/face-recognition-webservice
face-recognition face-recognition-python face-recognition-webservice python python-face-recognition python-sanic sanic simple-machine-learning
Last synced: about 1 month ago
JSON representation
Face recognition using python sanic
- Host: GitHub
- URL: https://github.com/FerdinaKusumah/face-recognition-webservice
- Owner: FerdinaKusumah
- License: mit
- Created: 2018-11-18T13:45:04.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-10-03T23:51:01.000Z (about 1 year ago)
- Last Synced: 2024-08-02T20:46:49.038Z (4 months ago)
- Topics: face-recognition, face-recognition-python, face-recognition-webservice, python, python-face-recognition, python-sanic, sanic, simple-machine-learning
- Language: Python
- Homepage:
- Size: 25.5 MB
- Stars: 20
- Watchers: 3
- Forks: 9
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-indo-projects - Simple Face Recognition - Simple face recognition with example. (Python)
- awesome-indonesia-repo - Simple Face Recognition - Simple face recognition with example. (Python)
README
# Face recognition webservice using python [sanic](https://github.com/huge-success/sanic)
## Manual install Prerequisites
Needs Python 3.5 +* Install all dependency
```bash
$ pip install -r requirements.txt
```* Run application
```bash
$ python main.py
```### This service will display name and face positions from famous technology founder
## Train process
* Go to train folder then run `python3 train.py` to train all images inside train folder then save all training result to folder model in root dir
* Note: this may take sometime to wait train all images to finish.
* Or you can use prebuild model inside folder model instead.# Testing api
Routes:* [GET] - `/api/hello` check if api is live
* [POST] - `/api/recognize` to recognize an image and return result as base64 image# Result
![Image 1](train/test/example_1.png)
![Image 2](train/test/example_2.png)
## References
* [Sanic framework](https://github.com/huge-success/sanic)
* [Face recognition](https://github.com/ageitgey/face_recognition)