Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/FoundationVision/UniRef

[ICCV2023] Segment Every Reference Object in Spatial and Temporal Spaces
https://github.com/FoundationVision/UniRef

object-segmentation unified-model

Last synced: about 1 month ago
JSON representation

[ICCV2023] Segment Every Reference Object in Spatial and Temporal Spaces

Awesome Lists containing this project

README

        

# UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces

Official implementation of [UniRef++](), an extended version of ICCV2023 [UniRef](https://openaccess.thecvf.com/content/ICCV2023/papers/Wu_Segment_Every_Reference_Object_in_Spatial_and_Temporal_Spaces_ICCV_2023_paper.pdf).

![UniRef](assets/network.png)

## Highlights

- UniRef/UniRef++ is a unified model for four object segmentation tasks, namely referring image segmentation (RIS), few-shot segmentation (FSS), referring video object segmentation (RVOS) and video object segmentation (VOS).
- At the core of UniRef++ is the UniFusion module for injecting various reference information into network. And we implement it using flash attention with high efficiency.
- UniFusion could play as the plug-in component for foundation models like [SAM](https://github.com/facebookresearch/segment-anything).

## Schedule

- [x] Add Training Guide
- [x] Add Evaluation Guide
- [x] Add Data Preparation
- [x] Release Model Checkpoints
- [x] Release Code

## Results

https://github.com/FoundationVision/UniRef/assets/21001460/63d875ed-9f5b-47c9-998f-e83faffedbba

### Referring Image Segmentation
![RIS](assets/RIS.png)

### Referring Video Object Segmentation
![RVOS](assets/Ref-vos.png)

### Video Object Segmentation
![VOS](assets/VOS.png)

### Zero-shot Video Segmentation & Few-shot Image Segmentation
![zero-few-shot](assets/zero-few-shot.png)

## Model Zoo

#### Objects365 Pretraining

| Model | Checkpoint |
| ------------------| :--------: |
| R50 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EfAf4ivSOb1Ltk8O6NnsrC8BFyGU-cv3MBxeCCG0cWPMwQ?e=x4MlHm) |
| Swin-L | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EW6pVPIup0RHrpIw3YJ_YX4Bke0Gln9O77AdBuLjGy3PLA?e=3TWdBN) |

#### Imge-joint Training

| Model | RefCOCO | FSS-1000 | Checkpoint |
| ------------------| :----: | :----: | :--------: |
| R50 | 76.3 | 85.2 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EQYh_VdQ849BkEFtVkFHVtkBAF1WaAkUcFdl8uq3RNPXKw?e=OpQYyg) |
| Swin-L | 79.9 | 87.7 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EexNP8rDXflHtNE6Zb-e9f4BtgiSFhWv9zam-f1aXu6AVA?e=c9tJyV) |

#### Video-joint Training

The results are reported on the validation set.

| Model | RefCOCO | FSS-1000 | Ref-Youtube-VOS | Ref-DAVIS17 | Youtube-VOS18 | DAVIS17 | LVOS | Checkpoint |
| ------------------| :----: | :---: | :-----: | :---: | :--: | :--: | :-------: | :--: |
| UniRef++-R50 | 75.6 | 79.1 | 61.5 | 63.5 | 81.9 | 81.5 | 60.1 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/Ecw4SgowlptPmDg14p0j6X0BKkqF0unHaSLat4TVstJdoQ?e=8z7DW8) |
| UniRef++-Swin-L | 79.1 | 85.4 | 66.9 | 67.2 | 83.2 | 83.9 | 67.2 | [model](https://connecthkuhk-my.sharepoint.com/:u:/g/personal/wjn922_connect_hku_hk/EST3QVvBmWVLrdwQ1D_nDwIBBvZ5U9I14MIkj-LirFTA_w?e=uxeOdn)

## Installation

See [INSTALL.md](./INSTALL.md)

## Getting Started

Please see [DATA.md](assets/DATA.md) for data preparation.

Please see [EVAL.md](assets/EVALUATION.md) for evaluation.

Please see [TRAIN.md](assets/TRAIN.md) for training.

## Citation

If you find this project useful in your research, please consider cite:

```BibTeX
@article{wu2023uniref++,
title={UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces},
author={Wu, Jiannan and Jiang, Yi and Yan, Bin and Lu, Huchuan and Yuan, Zehuan and Luo, Ping},
journal={arXiv preprint arXiv:2312.15715},
year={2023}
}
```

```BibTeX
@inproceedings{wu2023uniref,
title={Segment Every Reference Object in Spatial and Temporal Spaces},
author={Wu, Jiannan and Jiang, Yi and Yan, Bin and Lu, Huchuan and Yuan, Zehuan and Luo, Ping},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={2538--2550},
year={2023}
}
```

## Acknowledgement

The project is based on [UNINEXT](https://github.com/MasterBin-IIAU/UNINEXT) codebase. We also refer to the repositories [Detectron2](https://github.com/facebookresearch/detectron2), [Deformable DETR](https://github.com/fundamentalvision/Deformable-DETR), [STCN](https://github.com/hkchengrex/STCN), [SAM](https://github.com/facebookresearch/segment-anything). Thanks for their awsome works!