Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/FranckZibi/SharpNet
Open-source Deep Learning library in C# with CUDA and BLAS support
https://github.com/FranckZibi/SharpNet
Last synced: 2 months ago
JSON representation
Open-source Deep Learning library in C# with CUDA and BLAS support
- Host: GitHub
- URL: https://github.com/FranckZibi/SharpNet
- Owner: FranckZibi
- License: gpl-3.0
- Created: 2019-02-28T21:57:38.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-12T07:38:38.000Z (5 months ago)
- Last Synced: 2024-08-12T09:03:26.857Z (5 months ago)
- Language: C#
- Homepage:
- Size: 4.8 MB
- Stars: 12
- Watchers: 8
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-dotnet-machine-learning - SharpNet - source Deep Learning library in C# with CUDA and BLAS support. (Uncategorized / Uncategorized)
README
SharpNet is an Open-source Deep Learning library written in C# 10.0.
It supports:
- Residual Networks [v1](https://arxiv.org/pdf/1512.03385.pdf), [v2](https://arxiv.org/pdf/1603.05027.pdf), [WideResNet](https://arxiv.org/pdf/1605.07146.pdf) and [EfficientNet](https://arxiv.org/pdf/1905.11946.pdf)
- [DenseNet](https://arxiv.org/pdf/1608.06993.pdf)
- BatchNorm / Conv1D / Conv2D / Dense / Dropout / Embedding / GRU / LSTM / Pooling / RNN / Shortcut / SimpleRNN layers
- Elu / Relu / Leaky Relu / Sigmoid / Softmax / Swish / Tanh activations
- SGD & Adam optimizers
- Image Data Augmentation (with Cutout/CutMix/Mixup)
- Ensemble Learning
It can be run both on GPU (using NVIDIA cuDNN) and on the CPU (using MKL Blas).It is targeted to make a good use of the GPU (even if it is not currently as fast as MxNet) :
- on ResNet18 v1, it is between 1.5x (batch size = 128) and 3x time (batch size = 32) faster then TensorFlow 1.xIt requires:
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/)
- [DotNetCore 6.0](https://dotnet.microsoft.com/download/dotnet-core/6.0)
- [CUDA Toolkit 10.1, 10.2 or 11.0](https://developer.nvidia.com/cuda-downloads)
- [CuDNN 8.0](https://developer.nvidia.com/rdp/cudnn-download)
- [Intel MKL](https://software.intel.com/en-us/mkl)