Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Glaciohound/LM-Infinite

Implementation of paper "LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models"
https://github.com/Glaciohound/LM-Infinite

language-model long-context model-diagnostics

Last synced: about 2 months ago
JSON representation

Implementation of paper "LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models"

Awesome Lists containing this project

README

        

# LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models

[![arXiv](https://img.shields.io/badge/arXiv-2308.16137-b31b1b.svg)](https://arxiv.org/abs/2308.16137)
[![NAACL 2024 Outstanding Paper Award](https://img.shields.io/badge/NAACL%202024-Outstanding%20Paper%20Award-ffcc00.svg)](https://2024.naacl.org/awards/)

This is the codes of the paper
[LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models](https://arxiv.org/abs/2308.16137)
**(NAACL 2024 Outstanding Paper award)** in PyTorch.
The work is done by [Chi Han](https://glaciohound.github.io), Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, Sinong Wang.

## Table of Contents

- [Introduction](#introduction)
- [:tada::tada::tada: Now A Drop-in Replacement for HuggingFace Transformers!](#tada-tada-tada-now-a-drop-in-replacement-for-huggingface-transformers)
- [Requirements](#requirements)
- [Directory Structure](#directory-structure)
- [Usage](#usage)
- [Data Preparation](#data-preparation)
- [Model Preparation](#model-preparation)
- [Evaluation](#evaluation)
- [Perplexity](#perplexity)
- [Evaluating Perplexity at Extreme Lengths](#evaluating-perplexity-at-extreme-lengths)
- [Generation](#generation)
- [Evaluation Downstream Tasks](#evaluation-downstream-tasks)
- [Passkey Retrieval](#passkey-retrieval)
- [Qasper](#qasper)
- [Citation](#citation)

## Introduction

In this paper, the authors propose a simple method, called LM-Infinite, to improve the length generalization of large language models to an extreme length of **200M** tokens, without any additional training or parameter updates.

![](assets/diagnosis.jpg)

We are motivatedby first identifying three factors underlying the length generalization failure in LLMs: **(a)** Factor 1: Unseen distances between tokens cause attention logits to explode. **(b)** Factor 2: An unseen number of tokens can cause attention entropy to increase beyond the training range as the length increases. **(c)** Factor 3: Starting few tokens occupy a distinct feature region and should not be discarded.

![](assets/overview.jpg)

The key idea is to use (1) a $\Lambda$-shaped attention pattern, so that each token only attends to the nearest $L_{pretrain}$ tokens as well as a few starting tokens, and (2) a distance limit $L_{pretrain}$, so that the attention distance is capped at $L_{pretrain}$.
The proposed method is compatible with multiple state-of-the-art language models, including but not limited to LLaMA, Llama-2, GPT-J, MPT-7B series.
LM-Infinite is also computational efficient, with only $O(n)$ time complexity.

![](assets/perplexity_128k.jpg)

## :tada::tada::tada: Now A Drop-in Replacement for HuggingFace Transformers!

We have implemented the LM-Infinite method as a drop-in replacement for HuggingFace Transformers.
After you load the Transformers models, and if it is a Llama model, an MPT model, or a GPT-J model, you can run the following codes to enable LM-Infinite.

For Llama model:
```
from models.llama import convert_llama_model
model = convert_llama_model(model, 4096, 10)
```

For MPT model:
```
from models.mpt_7b import convert_mpt_model
model = convert_mpt_model(model, 4096, 10)
```

For GPT-J model:
```
from models.gpt_j import convert_gpt_j_model
model = convert_gpt_j_model(model, 4096, 10)
```

Then, you can use the model as usual!

## Requirements

- Python 3.11
- PyTorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
- Transformers 4.32.1
- SentencePiece 0.1.99
- Evaluate 0.4.0
- Rouge-Score 0.1.2
- Protobuf 3.20.3
- Accelerate 0.22.0
- DeepSpeed 0.10.2
- Tqdm 4.66.1
- Einops 0.6.1

A detailed list of python packages from an Anaconda perspective can be found in `requirements.txt`.
Some packages were installed by `conda` and some by `pip`.
My commands to install the requirements in Anaconda & Pip environment are as follows:

```
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
conda install -c conda-forge sentencepiece einops cudatoolkit-dev tqdm ipython datasets evaluate rouge-score protobuf accelerate langchain openai
pip install transformers deepspeed
```

## Directory Structure

```
├── LICENSE
├── README.md
├── requirements.txt
├── configs
│   └── zero3_efficient_config.json # config for deepspeed acceleration
├── data
│   ├── generation_metrics.py
│   ├── get_data.py # dataset loading and preprocessing
│   ├── passkey_retrieval
│   │   ├── create_passkey_data.py
│   │   ├── create_passkey_data.sh
│   │   └── passkey_retrieval_accuracy.py
│   └── split_pile_file.py # split the Pile dataset into task-specific files
├── models
│   ├── constant.py # a constant function model
│   ├── get_llama2
│   │   ├── convert_llama_weights_to_hf.py # convert llama-2 weights to huggingface format
│   │   └── download_llama2.sh
│   ├── get_model.py
│   ├── gpt_j.py
│   ├── lambda_attention.py # efficient implementation of lambda attention
│   ├── llama.py
│   ├── model_base.py
│   └── mpt_7b.py
├── scripts
│   ├── combine_evaluate_generation.py
│   ├── combine_results.py
│   ├── eval_downstream_tasks.py # evaluate on passkey retrieval task
│   ├── eval_generation.py # evaluate generation metrics
│   └── eval_ppl_deepspeed.py # evaluate perplexity
├── utils
│   ├── arguments.py
│   └── utils.py
└── visualization
├── plot_nll.py
├── position_pca.py
└── relative_attention_explosion.py
```

## Usage

### Data Preparation

For datasets, you need to prepared a corpus dataset.
If you download the the original Pile source (https://pile.eleuther.ai) to `${PILE_PATH}/test.jsonl.zst` and `${PILE_PATH}/val.jsonl.zst`, run the following commands to extract the compressed dataset.
```
cd ${PILE_PATH}
zstd -d ./ test.jsonl.zst
zstd -d ./ val.jsonl.zst
```
Then run the following commands to split the dataset into task-specific files.
```
cd ${REPOSITORY_ROOT}
mkdir -p ${PILE_PATH}/val
mkdir -p ${PILE_PATH}/test
python data/split_pile_file.py ${PILE_PATH}/val.jsonl ${PILE_PATH}/val
python data/split_pile_file.py ${PILE_PATH}/test.jsonl ${PILE_PATH}/test
```

However the official Pile does not seem to be available for download anymore, so you probably need to figure out another source(e.g., https://huggingface.co/datasets/arxiv_dataset or https://openwebtext2.readthedocs.io/en/latest/).
Alternatively, you can also use your own corpus.
Both two options require you to edit [data/get_data.py](data/get_data.py).

### Model Preparation

For backbone models, the paper uses Llama-2, LLaMA, GPT-J, and MPT-7B.
The last 3 models are directly available on-the-fly from HuggingFace model hub so not action is needed beforehand.
The Llama-2 download key needs to be requested from [Meta AI request form](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
Then run the following command
```
bash models/get_llama2/download_llama2.sh
```
and follow prompts to download the checkpoints to `${PATH_TO_LLAMA2_CHECKPOINTS}`.
Then run
```
python models/get_llama2/convert_llama_weights_to_hf.py \
--input_dir ${PATH_TO_LLAMA2_CHECKPOINTS} \
--model_size 7B \
--output_dir ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf
```
to convert the llama-2-7b checkpoints to huggingface format.

## Evaluation

The codes requires a `${LOG_DIR}` to store the logs and results.
Please select a directory with enough space.

### Perplexity

Evaluating the perplexity of Llama-2 model on ArXiv test set.

```
TRIAL=llama2-infinite-ArXiv
mkdir -p $LOG_DIR/$TRIAL
CUDA_VISIBLE_DEVICES=0
MASTER_PORT=$(shuf -i 29500-65535 -n 1)
DS_SKIP_CUDA_CHECK=1 PYTHONPATH=. deepspeed --include localhost:$CUDA_VISIBLE_DEVICES --master_port $MASTER_PORT scripts/eval_ppl_deepspeed.py \
--deepspeed_config configs/zero3_efficient_config.json \
--model ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf --tokenizer_path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--use_lambda_attention --local_branch 4096 --global_branch 100 --limit_distance 4096 \
--dataset the_pile --dataset_group ArXiv --split test --dataset_dir ${PILE_PATH} \
--max_length 32770 \
--log_dir $LOG_DIR/$TRIAL
```

A brief explanation of the arguments:
- `--model`: the path or name to model. Pass `decapoda-research/llama-7b-hf` to use LLaMA, `mosaicml/mpt-7b` to use MPT-7B, and `EleutherAI/gpt-j-6b` to use GPT-J-6B.
- `--tokenizer_path`: the path to the tokenizer. Remove this argument if not using Llama-2.
- `--use_lambda_attention`: use lambda attention. (Required for LM-Infinite)
- `--local_branch`: the local branch size. 2048 for LLaMA, MPT-7B and GPT-J (Required for LM-Infinite)
- `--global_branch`: the global branch size. Range 10-100 gives generally similar effect. (Required for LM-Infinite)
- `--limit_distance`: the distance limit. 2048 for LLaMA, MPT-7B and GPT-J (Required for LM-Infinite)
- `--dataset`: the dataset name. See [data/get_data.py](data/get_data.py) to figure how to use custom datasets.

If you want to evaluate on vanilla models without LM-Infinite, simply remove the
`--use_lambda_attention --local_branch 4096 --global_branch 100 --limit_distance 4096 `
argument set.

If you want only to evaluate on a subset of the test set, you can use the `--start_data_from` argument to specify the starting index of the test set, and/or `--max_data_num` to specify the number of examples after that index.

### Evaluating Perplexity at Extreme Lengths

```

TRIAL=llama2-infinite-ArXiv-extreme
CUDA_VISIBLE_DEVICES=0
MASTER_PORT=$(shuf -i 29500-65535 -n 1)
echo port: $MASTER_PORT
mkdir -p $LOG_DIR/$TRIAL
DS_SKIP_CUDA_CHECK=1 PYTHONPATH=. deepspeed --include localhost:$CUDA_VISIBLE_DEVICES --master_port $MASTER_PORT scripts/eval_infinite_ppl.py \
--deepspeed_config configs/zero3_efficient_config.json \
--model ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf --tokenizer_path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--use_lambda_attention --local_branch 4096 --global_branch 10 --limit_distance 4096 \
--dataset the_pile --dataset_group ArXiv --split test --dataset_dir ${PILE_PATH} \
--streaming_length 200000000 --max_length 128000 --start_data_from 2300 \
--log_dir $LOG_DIR/$TRIAL

```

### Generation

Generating evaluation from Llama-2 model on ArXiv test set.

```

TRIAL=llama2-infinite-generate-ArXiv
mkdir -p $LOG_DIR/$TRIAL
CUDA_VISIBLE_DEVICES=0
MASTER_PORT=$(shuf -i 29500-65535 -n 1)
DS_SKIP_CUDA_CHECK=1 PYTHONPATH=. deepspeed --include localhost:$CUDA_VISIBLE_DEVICES --master_port $MASTER_PORT scripts/eval_generation.py \
--deepspeed_config configs/zero3_efficient_config.json \
--model ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf --tokenizer_path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--use_lambda_attention --local_branch 4096 --global_branch 100 --limit_distance 4096 \
--dataset the_pile --dataset_group ArXiv --split test --dataset_dir ${PILE_PATH} \
--max_length 33000 \
--max_generation_length 100 --evaluate_metrics --evaluate_positions 4096 8192 12288 16384 \
--log_dir $LOG_DIR/$TRIAL

```

### Evaluation Downstream Tasks

#### Passkey Retrieval

First, we need to prepare the passkey retrieval dataset.
```
for MAX_LENGTH in 2048 3072 4096 5120 6144 7168 8192 10240 12288 14335 16384; do
echo $MAX_LENGTH
python data/passkey_retrieval/create_passkey_data.py \
--token-length $MAX_LENGTH \
--dump-file-path ${PASSKEY_DATA}/${MAX_LENGTH} \
--tokenizer-path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--num-samples 1000
done

```

Then, let us evaluate the passkey retrieval task.
```

CUDA_VISIBLE_DEVICES=0
for MAX_LENGTH in 6144 8192 10240 12288 16384; do
TRIAL=llama2-infinite-passkey-$MAX_LENGTH
mkdir -p $LOG_DIR/$TRIAL
MASTER_PORT=$(shuf -i 29500-65535 -n 1)
DS_SKIP_CUDA_CHECK=1 PYTHONPATH=. deepspeed --master_port $MASTER_PORT --include localhost:$CUDA_VISIBLE_DEVICES scripts/eval_downstream_tasks.py \
--deepspeed_config configs/zero3_efficient_config.json \
--model ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf --tokenizer_path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--use_lambda_attention --local_branch 4096 --global_branch 10 --limit_distance 4096 --triangle_offset 0 \
--top_k_attention 5 --top_k_from_layer 4 \
--dataset passkey_retrieval --dataset_dir ${PASSKEY_DATA} --dataset_group ${MAX_LENGTH} \
--max_generation_length 7 --evaluate_metrics \
--log_dir $LOG_DIR/$TRIAL
done

```

#### Qasper

Running the Qasper task:
```

CUDA_VISIBLE_DEVICES=0
DATASET=qasper
TRIAL=llama2-infinite-$DATASET
mkdir -p $LOG_DIR/$TRIAL
MASTER_PORT=$(shuf -i 29500-65535 -n 1)
echo port: $MASTER_PORT
DS_SKIP_CUDA_CHECK=1 PYTHONPATH=. deepspeed --include localhost:$CUDA_VISIBLE_DEVICES --master_port $MASTER_PORT scripts/eval_downstream_tasks.py \
--deepspeed_config configs/zero3_efficient_config_large.json \
--model ${PATH_TO_LLAMA2_CHECKPOINTS}/llama-2-7b-hf --tokenizer_path ${PATH_TO_LLAMA2_CHECKPOINTS} \
--use_lambda_attention --local_branch 4096 --global_branch 10 --limit_distance 4096 --triangle_offset 0 \
--top_k_attention 5 --top_k_from_layer 4 \
--dataset $DATASET --split test --evaluate_metrics \
--max_length 6144 --truncation_side center \
--log_dir $LOG_DIR/$TRIAL

```

## Citation

```
@inproceedings{han2024lm,
title={LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models},
author={Han, Chi and Wang, Qifan and Peng, Hao and Xiong, Wenhan and Chen, Yu and Ji, Heng and Wang, Sinong},
booktitle={Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)},
pages={3991--4008},
year={2024}
}
```