Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/GoogleCloudPlatform/ml-design-patterns
Source code accompanying O'Reilly book: Machine Learning Design Patterns
https://github.com/GoogleCloudPlatform/ml-design-patterns
Last synced: 15 days ago
JSON representation
Source code accompanying O'Reilly book: Machine Learning Design Patterns
- Host: GitHub
- URL: https://github.com/GoogleCloudPlatform/ml-design-patterns
- Owner: GoogleCloudPlatform
- License: apache-2.0
- Archived: true
- Created: 2020-03-17T22:00:06.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-04-28T23:11:45.000Z (over 3 years ago)
- Last Synced: 2024-05-15T13:23:06.780Z (6 months ago)
- Language: Jupyter Notebook
- Size: 33.4 MB
- Stars: 1,825
- Watchers: 49
- Forks: 507
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
*This is not an official Google product*
# ml-design-patterns
Source code accompanying O'Reilly book:
**Title**: Machine Learning Design Patterns
**Authors**: Valliappa (Lak) Lakshmanan, Sara Robinson, Michael Munnhttps://www.oreilly.com/library/view/machine-learning-design/9781098115777/
Buy from O'Reilly
Buy from AmazonWe will update this repo with source code as we write each chapter. Stay tuned!
[](https://deepnote.com/launch?url=https://github.com/GoogleCloudPlatform/ml-design-patterns)
# Chapters
* Preface
* The Need for ML Design Patterns
* Data representation design patterns
* #1 Hashed Feature
* #2 Embedding
* #3 Feature Cross
* #4 Multimodal Input
* Problem representation design patterns
* #5 Reframing
* #6 Multilabel
* #7 Ensemble
* #8 Cascade
* #9 Neutral Class
* #10 Rebalancing
* Patterns that modify model training
* #11 Useful overfitting
* #12 Checkpoints
* #13 Transfer Learning
* #14 Distribution Strategy
* #15 Hyperparameter Tuning
* Resilience patterns
* #16 Stateless Serving Function
* #17 Batch Serving
* #18 Continuous Model Evaluation
* #19 Two Phase Predictions
* #20 Keyed Predictions
* Reproducibility patterns
* #21 Transform
* #22 Repeatable Sampling
* #23 Bridged Schema
* #24 Windowed Inference
* #25 Workflow Pipeline
* #26 Feature Store
* #27 Model Versioning
* Responsible AI
* #28 Heuristic benchmark
* #29 Explainable Predictions
* #30 Fairness Lens
* Summary