Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Gumpest/YOLOv5-Multibackbone-Compression

YOLOv5 Series Multi-backbone(TPH-YOLOv5, Ghostnet, ShuffleNetv2, Mobilenetv3Small, EfficientNetLite, PP-LCNet, SwinTransformer YOLO), Module(CBAM, DCN), Pruning (EagleEye, Network Slimming), Quantization (MQBench) and Deployment (TensorRT, ncnn) Compression Tool Box.
https://github.com/Gumpest/YOLOv5-Multibackbone-Compression

cbam eagleeye efficientnetlite-yolov5 ghostnet-yolov5 mobilenetv3small-yolov5 mqbench ncnn network-slimming pplcnet shufflenetv2-yolov5 swin-transformer tensorrt tph-yolov5

Last synced: 3 months ago
JSON representation

YOLOv5 Series Multi-backbone(TPH-YOLOv5, Ghostnet, ShuffleNetv2, Mobilenetv3Small, EfficientNetLite, PP-LCNet, SwinTransformer YOLO), Module(CBAM, DCN), Pruning (EagleEye, Network Slimming), Quantization (MQBench) and Deployment (TensorRT, ncnn) Compression Tool Box.

Awesome Lists containing this project

README

        

# YOLOv5-Compression

![](https://img.shields.io/badge/Update-News-blue.svg?style=plastic)

2021.10.30 复现TPH-YOLOv5

2021.10.31 完成替换backbone为Ghostnet

2021.11.02 完成替换backbone为Shufflenetv2

2021.11.05 完成替换backbone为Mobilenetv3Small

2021.11.10 完成EagleEye对YOLOv5系列剪枝支持

2021.11.14 完成MQBench对YOLOv5系列量化支持

2021.11.16 完成替换backbone为EfficientNetLite-0

2021.11.26 完成替换backbone为PP-LCNet-1x

2021.12.12 完成SwinTrans-YOLOv5(C3STR)

2021.12.15 完成Slimming对YOLOv5系列剪枝支持

## Requirements

```shell
pip install -r requirements.txt
```

## Multi-Backbone Substitution for YOLOs

### 1、Base Model

Train on Visdrone DataSet (*Input size is 608*)

| No. | Model | mAP | mAP@50 | Parameters(M) | GFLOPs |
| ---- | ------- | ---- | ------ | ------------- | ------ |
| 1 | YOLOv5n | 13.0 | 26.20 | 1.78 | 4.2 |
| 2 | YOLOv5s | 18.4 | 34.00 | 7.05 | 15.9 |
| 3 | YOLOv5m | 21.6 | 37.80 | 20.91 | 48.2 |
| 4 | YOLOv5l | 23.2 | 39.70 | 46.19 | 108.1 |
| 5 | YOLOv5x | 24.3 | 40.80 | 86.28 | 204.4 |

### 2、Higher Precision Model

#### A、TPH-YOLOv5 ![](https://img.shields.io/badge/Model-BeiHangUni-yellowgreen.svg?style=plastic)

Train on Visdrone DataSet (*6-7 size is 640,8 size is 1536*)

| No. | Model | mAP | mAP@50 | Parameters(M) | GFLOPs |
| ---- | -------------- | ---- | ------ | ------------- | ------ |
| 6 | YOLOv5xP2 | 30.0 | 49.29 | 90.96 | 314.2 |
| 7 | YOLOv5xP2 CBAM | 30.1 | 49.40 | 91.31 | 315.1 |
| 8 | YOLOv5x-TPH | 40.7 | 63.00 | 112.97 | 270.8 |

###### Usage:

```shell
nohup python train.py --data VisDrone.yaml --weights yolov5n.pt --cfg models/yolov5n.yaml --epochs 300 --batch-size 8 --img 608 --device 0,1 --sync-bn >> yolov5n.txt &
```

###### Composition:

**P2 Head、CBAM、TPH、BiFPN、SPP**

TPH-YOLOv5

1、TransBlock的数量会根据YOLO规模的不同而改变,标准结构作用于YOLOv5m

2、当YOLOv5x为主体与标准结构的区别是:(1)首先去掉14和19的CBAM模块(2)降低与P2关联的通道数(128)(3)在输出头之前会添加SPP模块,注意SPP的kernel随着P的像素减小而减小(4)在CBAM之后进行输出(5)只保留backbone以及最后一层输出的TransBlock(6)采用BiFPN作为neck

3、更改不同Loss分支的权重:如下图,当训练集的分类与置信度损失还在下降时,验证集的分类与置信度损失开始反弹,说明出现了过拟合,需要降低这两个任务的权重

消融实验如下:

| box | cls | obj | acc |
| ---- | ---- | ---- | --------- |
| 0.05 | 0.5 | 1.0 | 37.90 |
| 0.05 | 0.3 | 0.7 | **38.00** |
| 0.05 | 0.2 | 0.4 | 37.5 |

loss

#### B、SwinTrans-YOLOv5![](https://img.shields.io/badge/Model-Microsoft-yellow.svg?style=plastic)

```shell
pip install timm
```

###### Usage:

```shell
python train.py --data VisDrone.yaml --weights yolov5x.pt --cfg models/accModels/yolov5xP2CBAM-Swin-BiFPN-SPP.yaml --hyp data/hyps/hyp.visdrone.yaml --epochs 60 --batch-size 4 --img 1536 --nohalf
```

(1)Window size由***7***替换为检测任务常用分辨率的公约数***8***

(2)create_mask封装为函数,由在init函数执行变为在forward函数执行

(3)若分辨率小于window size或不是其公倍数时,在其右侧和底部Padding

*debug:在计算完之后需要反padding回去,否则与cv2支路的img_size无法对齐*

(4)forward函数前后对输入输出reshape

(5)验证C3STR时,需要手动关闭默认模型在half精度下验证(*--nohalf*)

### 3、Slighter Model

Train on Visdrone DataSet (*1 size is 608,2-6 size is 640*)

| No | Model | mAP | mAP@50 | Parameters(M) | GFLOPs | TrainCost(h) | Memory Cost(G) | PT File | FPS@CPU |
| ---- | ------------------------- | --------- | ------ | ------------- | -------- | ------------ | -------------- | ------------------------------------------------------------ | ------- |
| 1 | YOLOv5l | 23.2 | 39.7 | 46.19 | 108.1 | | | | |
| 2 | YOLOv5l-GhostNet | 18.4 | 33.8 | 24.27 | 42.4 | 27.44 | 4.97 | [PekingUni Cloud](https://disk.pku.edu.cn:443/link/35BD905E65DE091E2A58316B20BBE775) | |
| 3 | YOLOv5l-ShuffleNetV2 | 16.48 | 31.1 | 21.27 | 40.5 | 10.98 | 2.41 | [PekingUni Cloud](https://disk.pku.edu.cn:443/link/A5ED89B7B190FCF1C8187A0A8AF20C4F) | |
| 4 | YOLOv5l-MobileNetv3Small | 16.55 | 31.2 | **20.38** | **38.4** | **10.19** | 5.30 | [PekingUni Cloud](https://disk.pku.edu.cn:443/link/EE375ED30AAD3F2B3FA5055DD6F4964C) | |
| 5 | YOLOv5l-EfficientNetLite0 | **19.12** | **35** | 23.01 | 43.9 | 13.94 | 2.04 | [PekingUni Cloud](https://disk.pku.edu.cn:443/link/45E65A080C4574036EE274B7BD83B7EA) | |
| 6 | YOLOv5l-PP-LCNet | 17.63 | 32.8 | 21.64 | 41.7 | 18.52 | **1.66** | [PekingUni Cloud](https://disk.pku.edu.cn:443/link/7EBE07BA6D7985C7053BF0A8F2591464) | |

#### A、GhostNet-YOLOv5 ![](https://img.shields.io/badge/Model-HuaWei-orange.svg?style=plastic)

GhostNet

(1)为保持一致性,下采样的DW的kernel_size均等于3

(2)neck部分与head部分沿用YOLOv5l原结构

(3)中间通道人为设定(expand)

#### B、ShuffleNetV2-YOLOv5 ![](https://img.shields.io/badge/Model-Megvii-orange.svg?style=plastic)

Shffulenet

(1)Focus Layer不利于芯片部署,频繁的slice操作会让缓存占用严重

(2)避免多次使用C3 Leyer以及高通道的C3 Layer(违背G1与G3准则)

(3)中间通道不变

#### C、MobileNetv3Small-YOLOv5 ![](https://img.shields.io/badge/Model-Google-orange.svg?style=plastic)

Mobilenetv3s

(1)原文结构,部分使用Hard-Swish激活函数以及SE模块

(2)Neck与head部分嫁接YOLOv5l原结构

(3)中间通道人为设定(expand)

#### D、EfficientNetLite0-YOLOv5 ![](https://img.shields.io/badge/Model-Google-orange.svg?style=plastic)

efficientlite

(1)使用Lite0结构,且不使用SE模块

(2)针对dropout_connect_rate,手动赋值(随着idx_stage变大而变大)

(3)中间通道一律*6(expand)

#### E、PP-LCNet-YOLOv5 ![](https://img.shields.io/badge/Model-Baidu-orange.svg?style=plastic)

PP-LCNet

(1)使用PP-LCNet-1x结构,在网络末端使用SE以及5*5卷积核

(2)SeBlock压缩维度为原1/16

(3)中间通道不变

## Pruning for YOLOs

| Model | mAP | mAP@50 | Parameters(M) | GFLOPs | FPS@CPU |
| -------------------- | ---- | ------ | ------------- | ------ | ------- |
| YOLOv5s | 18.4 | 34 | 7.05 | 15.9 | |
| YOLOv5n | 13 | 26.2 | 1.78 | 4.2 | |
| [email protected] | 14.3 | 27.9 | 4.59 | 9.6 | |

### 1、Prune Strategy

(1)基于YOLOv5块状结构设计,对Conv、C3、SPP(F)模块进行剪枝,具体来说有以下:

- Conv模块的输出通道数
- C3模块中cv2块和cv3块的输出通道数
- C3模块中若干个bottleneck中的cv1块的输出通道数

(2)八倍通道剪枝(outchannel = 8*n)

(3)ShortCut、concat皆合并剪枝

### 2、Prune Tools

#### (1)EagleEye

[EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning](https://arxiv.org/abs/2007.02491)

基于搜索的通道剪枝方法,核心思想是随机搜索到大量符合目标约束的子网,然后快速更新校准BN层的均值与方差参数,并在验证集上测试校准后全部子网的精度。精度最高的子网拥有最好的架构,经微调恢复后能达到较高的精度。

![eagleeye](https://github.com/Cydia2018/YOLOv5-Multibackbone-Compression/blob/main/img/eagleeye.png)

##### Usage

1. 正常训练模型

```shell
python train.py --data data/VisDrone.yaml --imgsz 640 --weights yolov5s.pt --cfg models/prunModels/yolov5s-pruning.yaml --device 0
```

(注意训练其他模型,参考/prunModels/yolov5s-pruning.yaml进行修改,目前已支持v6架构)

2. 搜索最优子网

```shell
python pruneEagleEye.py --weights path_to_trained_yolov5_model --cfg models/prunModels/yolov5s-pruning.yaml --data data/VisDrone.yaml --path path_to_pruned_yolov5_yaml --max_iter maximum number of arch search --remain_ratio the whole FLOPs remain ratio --delta 0.02
```

3. 微调恢复精度

```shell
python train.py --data data/VisDrone.yaml --imgsz 640 --weights path_to_Eaglepruned_yolov5_model --cfg path_to_pruned_yolov5_yaml --device 0
```

#### (2)Network Slimming

[Learning Efficient Convolutional Networks through Network Slimming](https://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.pdf)

##### Usage

1. 模型BatchNorm Layer \gamma 稀疏化训练

```shell
python train.py --data data/VisDrone.yaml --imgsz 640 --weights yolov5s.pt --cfg models/prunModels/yolov5s-pruning.yaml --device 0 --sparse
```

(注意训练其他模型,参考/prunModels/yolov5s-pruning.yaml进行修改,目前已支持v6架构)

2. BatchNorm Layer剪枝

```shell
python pruneSlim.py --weights path_to_sparsed_yolov5_model --cfg models/prunModels/yolov5s-pruning.yaml --data data/VisDrone.yaml --path path_to_pruned_yolov5_yaml --global_percent 0.6 --device 3
```

3. 微调恢复精度

```shell
python train.py --data data/VisDrone.yaml --imgsz 640 --weights path_to_Slimpruned_yolov5_model --cfg path_to_pruned_yolov5_yaml --device 0
```

## Quantize Aware Training for YOLOs

MQBench是实际硬件部署下评估量化算法的框架,进行各种适合于硬件部署的量化训练(QAT)

### Requirements

- PyTorch == 1.8.1

### Install MQBench Lib ![](https://img.shields.io/badge/Tec-Sensetime-brightgreen.svg?style=plastic)

由于MQBench目前还在不断更新,选择0.0.2稳定版本作为本仓库的量化库。

```shell
git clone https://github.com/ZLkanyo009/MQBench.git
cd MQBench
python setup.py build
python setup.py install
```

### Usage

训练脚本实例:

```shell
python train.py --data VisDrone.yaml --weights yolov5n.pt --cfg models/yolov5n.yaml --epochs 300 --batch-size 8 --img 608 --nosave --device 0,1 --sync-bn --quantize --BackendType NNIE
```

## Deploy
目前已支持TensorRT及NCNN部署,详见[YOLOv5-Multibackbone-Compression/deploy](https://github.com/Gumpest/YOLOv5-Multibackbone-Compression/blob/main/deploy)

## To do

- [x] Multibackbone: MobileNetV3-small
- [x] Multibackbone: ShuffleNetV2
- [x] Multibackbone: GhostNet
- [x] Multibackbone: EfficientNet-Lite0
- [x] Multibackbone: PP-LCNet
- [x] Multibackbone: TPH-YOLOv5
- [x] Module: SwinTrans(C3STR)
- [ ] Module: Deformable Convolution
- [x] Pruner: Network Slimming
- [x] Pruner: EagleEye
- [ ] Pruner: OneShot (L1, L2, FPGM), ADMM, NetAdapt, Gradual, End2End
- [x] Quantization: MQBench
- [ ] Knowledge Distillation

## Acknowledge

感谢TPH-YOLOv5作者Xingkui Zhu

官方实现[cv516Buaa/tph-yolov5 (github.com)](https://github.com/cv516Buaa/tph-yolov5)

感谢[ZJU-lishuang/yolov5_prune: yolov5剪枝,支持v2,v3,v4,v6版本的yolov5 (github.com)](https://github.com/ZJU-lishuang/yolov5_prune)