Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/HKUDS/LightRAG
"LightRAG: Simple and Fast Retrieval-Augmented Generation"
https://github.com/HKUDS/LightRAG
knowledge-graph large-language-models retrieval-augmented-generation
Last synced: 3 months ago
JSON representation
"LightRAG: Simple and Fast Retrieval-Augmented Generation"
- Host: GitHub
- URL: https://github.com/HKUDS/LightRAG
- Owner: HKUDS
- License: mit
- Created: 2024-10-02T11:57:54.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-10-15T12:07:09.000Z (3 months ago)
- Last Synced: 2024-10-15T12:40:06.654Z (3 months ago)
- Topics: knowledge-graph, large-language-models, retrieval-augmented-generation
- Language: Python
- Homepage: https://arxiv.org/abs/2410.05779
- Size: 95.7 KB
- Stars: 591
- Watchers: 13
- Forks: 67
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - HKUDS/LightRAG - graphrag。LightRAG,它将图形结构整合到文本索引和检索过程中。这个创新的框架采用双级检索系统,增强了从低级和高级知识发现中进行综合信息检索的能力。此外,图形结构与矢量表示的集成有助于高效检索相关实体及其关系,从而显著缩短响应时间,同时保持上下文相关性。增量更新算法进一步增强了此功能,该算法可确保及时集成新数据,使系统能够在快速变化的数据环境中保持有效和响应。广泛的实验验证表明,与现有方法相比,检索准确性和效率有了显著提高。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
- awesome-ccamel - HKUDS/LightRAG - "LightRAG: Simple and Fast Retrieval-Augmented Generation" (Python)
- awesomerag_paper - https://github.com/HKUDS/LightRAG
- awesomerag_paper - https://github.com/HKUDS/LightRAG
- awesome-LLM-resourses - LightRAG - Augmented Generation. (知识库 RAG)
- awesome-production-machine-learning - LightRAG - A simple and fast retrieval-augmented generation framework. (Neural Search and Retrieval)
- Awesome-LLM-RAG-Application - LightRAG
README
🚀 LightRAG: Simple and Fast Retrieval-Augmented Generation
![请添加图片描述](https://i-blog.csdnimg.cn/direct/567139f1a36e4564abc63ce5c12b6271.jpeg)
This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag).
![请添加图片描述](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)## 🎉 News
- [x] [2024.10.15]🎯🎯📢📢LightRAG now supports Hugging Face models!## Install
* Install from source
```bash
cd LightRAG
pip install -e .
```
* Install from PyPI
```bash
pip install lightrag-hku
```## Quick Start
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens":
```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```
Use the below Python snippet to initialize LightRAG and perform queries:```python
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_completeWORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)with open("./book.txt") as f:
rag.insert(f.read())# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
```
### Using Hugging Face Models
If you want to use Hugging Face models, you only need to set LightRAG as follows:
```python
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel, AutoTokenizer# Initialize LightRAG with Hugging Face model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete, # Use Hugging Face complete model for text generation
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
# Use Hugging Face embedding function
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embedding(
texts,
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
)
),
)
```
### Batch Insert
```python
# Batch Insert: Insert multiple texts at once
rag.insert(["TEXT1", "TEXT2",...])
```
### Incremental Insert```python
# Incremental Insert: Insert new documents into an existing LightRAG instance
rag = LightRAG(working_dir="./dickens")with open("./newText.txt") as f:
rag.insert(f.read())
```
## Evaluation
### Dataset
The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
```python
Given the following description of a dataset:{description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
```
### Batch Eval
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}Here are the two answers:
**Answer 1:**
{answer1}**Answer 2:**
{answer2}Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
```
### Overall Performance Table
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
| **Comprehensiveness** | 32.69% | **67.31%** | 35.44% | **64.56%** | 19.05% | **80.95%** | 36.36% | **63.64%** |
| **Diversity** | 24.09% | **75.91%** | 35.24% | **64.76%** | 10.98% | **89.02%** | 30.76% | **69.24%** |
| **Empowerment** | 31.35% | **68.65%** | 35.48% | **64.52%** | 17.59% | **82.41%** | 40.95% | **59.05%** |
| **Overall** | 33.30% | **66.70%** | 34.76% | **65.24%** | 17.46% | **82.54%** | 37.59% | **62.40%** |
| | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** |
| **Comprehensiveness** | 32.05% | **67.95%** | 39.30% | **60.70%** | 18.57% | **81.43%** | 38.89% | **61.11%** |
| **Diversity** | 29.44% | **70.56%** | 38.71% | **61.29%** | 15.14% | **84.86%** | 28.50% | **71.50%** |
| **Empowerment** | 32.51% | **67.49%** | 37.52% | **62.48%** | 17.80% | **82.20%** | 43.96% | **56.04%** |
| **Overall** | 33.29% | **66.71%** | 39.03% | **60.97%** | 17.80% | **82.20%** | 39.61% | **60.39%** |
| | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** |
| **Comprehensiveness** | 24.39% | **75.61%** | 36.49% | **63.51%** | 27.68% | **72.32%** | 42.17% | **57.83%** |
| **Diversity** | 24.96% | **75.34%** | 37.41% | **62.59%** | 18.79% | **81.21%** | 30.88% | **69.12%** |
| **Empowerment** | 24.89% | **75.11%** | 34.99% | **65.01%** | 26.99% | **73.01%** | **45.61%** | **54.39%** |
| **Overall** | 23.17% | **76.83%** | 35.67% | **64.33%** | 27.68% | **72.32%** | 42.72% | **57.28%** |
| | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** |
| **Comprehensiveness** | 45.56% | **54.44%** | 45.98% | **54.02%** | 47.13% | **52.87%** | **51.86%** | 48.14% |
| **Diversity** | 19.65% | **80.35%** | 39.64% | **60.36%** | 25.55% | **74.45%** | 35.87% | **64.13%** |
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |## Reproduce
All the code can be found in the `./reproduce` directory.
### Step-0 Extract Unique Contexts
First, we need to extract unique contexts in the datasets.
```python
def extract_unique_contexts(input_directory, output_directory):os.makedirs(output_directory, exist_ok=True)
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
print(f"Found {len(jsonl_files)} JSONL files.")for file_path in jsonl_files:
filename = os.path.basename(file_path)
name, ext = os.path.splitext(filename)
output_filename = f"{name}_unique_contexts.json"
output_path = os.path.join(output_directory, output_filename)unique_contexts_dict = {}
print(f"Processing file: {filename}")
try:
with open(file_path, 'r', encoding='utf-8') as infile:
for line_number, line in enumerate(infile, start=1):
line = line.strip()
if not line:
continue
try:
json_obj = json.loads(line)
context = json_obj.get('context')
if context and context not in unique_contexts_dict:
unique_contexts_dict[context] = None
except json.JSONDecodeError as e:
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
except FileNotFoundError:
print(f"File not found: {filename}")
continue
except Exception as e:
print(f"An error occurred while processing file {filename}: {e}")
continueunique_contexts_list = list(unique_contexts_dict.keys())
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")try:
with open(output_path, 'w', encoding='utf-8') as outfile:
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
print(f"Unique `context` entries have been saved to: {output_filename}")
except Exception as e:
print(f"An error occurred while saving to the file {output_filename}: {e}")print("All files have been processed.")
```
### Step-1 Insert Contexts
For the extracted contexts, we insert them into the LightRAG system.```python
def insert_text(rag, file_path):
with open(file_path, mode='r') as f:
unique_contexts = json.load(f)
retries = 0
max_retries = 3
while retries < max_retries:
try:
rag.insert(unique_contexts)
break
except Exception as e:
retries += 1
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
time.sleep(10)
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
```
### Step-2 Generate QueriesWe extract tokens from both the first half and the second half of each context in the dataset, then combine them as the dataset description to generate queries.
```python
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')def get_summary(context, tot_tokens=2000):
tokens = tokenizer.tokenize(context)
half_tokens = tot_tokens // 2start_tokens = tokens[1000:1000 + half_tokens]
end_tokens = tokens[-(1000 + half_tokens):1000]summary_tokens = start_tokens + end_tokens
summary = tokenizer.convert_tokens_to_string(summary_tokens)
return summary
```### Step-3 Query
For the queries generated in Step-2, we will extract them and query LightRAG.
```python
def extract_queries(file_path):
with open(file_path, 'r') as f:
data = f.read()
data = data.replace('**', '')queries = re.findall(r'- Question \d+: (.+)', data)
return queries
```## Code Structure
```python
.
├── examples
│ ├── batch_eval.py
│ ├── generate_query.py
│ ├── lightrag_openai_demo.py
│ └── lightrag_hf_demo.py
├── lightrag
│ ├── __init__.py
│ ├── base.py
│ ├── lightrag.py
│ ├── llm.py
│ ├── operate.py
│ ├── prompt.py
│ ├── storage.py
│ └── utils.py
├── reproduce
│ ├── Step_0.py
│ ├── Step_1.py
│ ├── Step_2.py
│ └── Step_3.py
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
```## Star History
## Citation
```python
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```