Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/HLasse/TextDescriptives
A Python library for calculating a large variety of metrics from text
https://github.com/HLasse/TextDescriptives
dependency-distance descriptive-statistics nlp python readability readability-scores spacy spacy-extension statistics syntactic-analysis
Last synced: 2 months ago
JSON representation
A Python library for calculating a large variety of metrics from text
- Host: GitHub
- URL: https://github.com/HLasse/TextDescriptives
- Owner: HLasse
- License: apache-2.0
- Created: 2020-01-28T10:37:59.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2024-10-08T00:18:27.000Z (4 months ago)
- Last Synced: 2024-11-11T22:21:50.817Z (2 months ago)
- Topics: dependency-distance, descriptive-statistics, nlp, python, readability, readability-scores, spacy, spacy-extension, statistics, syntactic-analysis
- Language: Python
- Homepage: https://hlasse.github.io/TextDescriptives/
- Size: 20.9 MB
- Stars: 314
- Watchers: 6
- Forks: 23
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
README
# TextDescriptives
[![spacy](https://img.shields.io/badge/built%20with-spaCy-09a3d5.svg)](https://spacy.io)
[![github actions pytest](https://github.com/hlasse/textdescriptives/actions/workflows/tests.yml/badge.svg)](https://github.com/hlasse/textdescriptives/actions)
[![github actions docs](https://github.com/hlasse/textdescriptives/actions/workflows/documentation.yml/badge.svg)](https://hlasse.github.io/TextDescriptives/)
[![status](https://joss.theoj.org/papers/06447337ee61969b5a64de484199df24/status.svg)](https://joss.theoj.org/papers/06447337ee61969b5a64de484199df24)
[![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co/spaces/HLasse/textdescriptives)A Python library for calculating a large variety of metrics from text(s) using spaCy v.3 pipeline components and extensions.
# π§ Installation
`pip install textdescriptives`# π° News
* We now have a TextDescriptives-powered web-app so you can extract and downloads metrics without a single line of code! Check it out [here](https://huggingface.co/spaces/HLasse/textdescriptives)
* Version 2.0 out with a new API, a new component, updated documentation, and tutorials! Components are now called by "`textdescriptives/{metric_name}`. New `coherence` component for calculating the semantic coherence between sentences. See the [documentation](https://hlasse.github.io/TextDescriptives/) for tutorials and more information!# β‘ Quick Start
Use `extract_metrics` to quickly extract your desired metrics. To see available methods you can simply run:
```python
import textdescriptives as td
td.get_valid_metrics()
# {'quality', 'readability', 'all', 'descriptive_stats', 'dependency_distance', 'pos_proportions', 'information_theory', 'coherence'}
```Set the `spacy_model` parameter to specify which spaCy model to use, otherwise, TextDescriptives will auto-download an appropriate one based on `lang`. If `lang` is set, `spacy_model` is not necessary and vice versa.
Specify which metrics to extract in the `metrics` argument. `None` extracts all metrics.
```py
import textdescriptives as tdtext = "The world is changed. I feel it in the water. I feel it in the earth. I smell it in the air. Much that once was is lost, for none now live who remember it."
# will automatically download the relevant model (Β΄en_core_web_lgΒ΄) and extract all metrics
df = td.extract_metrics(text=text, lang="en", metrics=None)# specify spaCy model and which metrics to extract
df = td.extract_metrics(text=text, spacy_model="en_core_web_lg", metrics=["readability", "coherence"])
```## Usage with spaCy
To integrate with other spaCy pipelines, import the library and add the component(s) to your pipeline using the standard spaCy syntax. Available components are *descriptive_stats*, *readability*, *dependency_distance*, *pos_proportions*, *coherence*, and *quality* prefixed with `textdescriptives/`.
If you want to add all components you can use the shorthand `textdescriptives/all`.
```py
import spacy
import textdescriptives as td
# load your favourite spacy model (remember to install it first using e.g. `python -m spacy download en_core_web_sm`)
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textdescriptives/all")
doc = nlp("The world is changed. I feel it in the water. I feel it in the earth. I smell it in the air. Much that once was is lost, for none now live who remember it.")# access some of the values
doc._.readability
doc._.token_length
```TextDescriptives includes convenience functions for extracting metrics from a `Doc` to a Pandas DataFrame or a dictionary.
```py
td.extract_dict(doc)
td.extract_df(doc)
```
| | text | first_order_coherence | second_order_coherence | pos_prop_DET | pos_prop_NOUN | pos_prop_AUX | pos_prop_VERB | pos_prop_PUNCT | pos_prop_PRON | pos_prop_ADP | pos_prop_ADV | pos_prop_SCONJ | flesch_reading_ease | flesch_kincaid_grade | smog | gunning_fog | automated_readability_index | coleman_liau_index | lix | rix | n_stop_words | alpha_ratio | mean_word_length | doc_length | proportion_ellipsis | proportion_bullet_points | duplicate_line_chr_fraction | duplicate_paragraph_chr_fraction | duplicate_5-gram_chr_fraction | duplicate_6-gram_chr_fraction | duplicate_7-gram_chr_fraction | duplicate_8-gram_chr_fraction | duplicate_9-gram_chr_fraction | duplicate_10-gram_chr_fraction | top_2-gram_chr_fraction | top_3-gram_chr_fraction | top_4-gram_chr_fraction | symbol_#_to_word_ratio | contains_lorem ipsum | passed_quality_check | dependency_distance_mean | dependency_distance_std | prop_adjacent_dependency_relation_mean | prop_adjacent_dependency_relation_std | token_length_mean | token_length_median | token_length_std | sentence_length_mean | sentence_length_median | sentence_length_std | syllables_per_token_mean | syllables_per_token_median | syllables_per_token_std | n_tokens | n_unique_tokens | proportion_unique_tokens | n_characters | n_sentences |
| ---: | :------------------------ | --------------------: | ---------------------: | -----------: | ------------: | -----------: | ------------: | -------------: | ------------: | -----------: | -----------: | -------------: | ------------------: | -------------------: | ------: | ----------: | --------------------------: | -----------------: | ------: | ---: | -----------: | ----------: | ---------------: | ---------: | ------------------: | -----------------------: | --------------------------: | -------------------------------: | ----------------------------: | ----------------------------: | ----------------------------: | ----------------------------: | ----------------------------: | -----------------------------: | ----------------------: | ----------------------: | ----------------------: | ---------------------: | :------------------- | :------------------- | -----------------------: | ----------------------: | -------------------------------------: | ------------------------------------: | ----------------: | ------------------: | ---------------: | -------------------: | ---------------------: | ------------------: | -----------------------: | -------------------------: | ----------------------: | -------: | --------------: | -----------------------: | -----------: | ----------: |
| 0 | The world is changed(...) | 0.633002 | 0.573323 | 0.097561 | 0.121951 | 0.0731707 | 0.170732 | 0.146341 | 0.195122 | 0.0731707 | 0.0731707 | 0.0487805 | 107.879 | -0.0485714 | 5.68392 | 3.94286 | -2.45429 | -0.708571 | 12.7143 | 0.4 | 24 | 0.853659 | 2.95122 | 41 | 0 | 0 | 0 | 0 | 0.232258 | 0.232258 | 0 | 0 | 0 | 0 | 0.0580645 | 0.174194 | 0 | 0 | False | False | 1.77524 | 0.553188 | 0.457143 | 0.0722806 | 3.28571 | 3 | 1.54127 | 7 | 6 | 3.09839 | 1.08571 | 1 | 0.368117 | 35 | 23 | 0.657143 | 121 | 5 |# π Documentation
TextDescriptives has a detailed documentation as well as a series of Jupyter notebook tutorials.
All the tutorials are located in the `docs/tutorials` folder and can also be found on the documentation website.| Documentation | |
| -------------------------- | ---------------------------------------------------------------------------------- |
| π **[Getting started]** | Guides and instructions on how to use TextDescriptives and its features. |
| π©βπ» **[Demo]** | A live demo of TextDescriptives. |
| π **[Tutorials]** | Detailed tutorials on how to make the most of TextDescriptives |
| π° **[News and changelog]** | New additions, changes and version history. |
| π **[API References]** | The detailed reference for TextDescriptive's API. Including function documentation |
| π **[Paper]** | The preprint of the TextDescriptives paper. |[Paper]: https://arxiv.org/abs/2301.02057
[Tutorials]: https://hlasse.github.io/TextDescriptives/tutorial.html
[Getting started]: https://hlasse.github.io/TextDescriptives/usingthepackage.html
[API References]: https://hlasse.github.io/TextDescriptives/index.html
[News and changelog]: https://hlasse.github.io/TextDescriptives/news.html
[Demo]: https://huggingface.co/spaces/HLasse/textdescriptives