Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/HuiGuanLab/ms-sl
Source code of our MM'22 paper Partially Relevant Video Retrieval
https://github.com/HuiGuanLab/ms-sl
Last synced: about 2 months ago
JSON representation
Source code of our MM'22 paper Partially Relevant Video Retrieval
- Host: GitHub
- URL: https://github.com/HuiGuanLab/ms-sl
- Owner: HuiGuanLab
- License: apache-2.0
- Created: 2022-04-29T05:33:38.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-11-04T02:11:18.000Z (3 months ago)
- Last Synced: 2024-11-04T02:27:47.495Z (3 months ago)
- Language: Python
- Homepage:
- Size: 4.51 MB
- Stars: 51
- Watchers: 3
- Forks: 7
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - HuiGuanLab/ms-sl - 视频检索(Video-to-Text Retrieval, T2VR)任务,提出了部分相关的视频检索(Partially Relevant Video Retrieval, PRVR)。PRVR 旨在从大量未剪辑的长视频中检索出与查询文本部分相关的对应视频。作者设计了多尺度多示例模型,该模型分别对视频进行片段尺度和帧尺度的特征表示,并引入了以关键片段为向导的注意力聚合方法,模型整体以从粗到细的方式学习文本-视频间的相似度关系。该模型也可用于提高视频库片段检索(Video Corpus Moment Retrieval,VCMR)模型的性能。 (其他_机器视觉 / 网络服务_其他)
README
# Partially Relevant Video Retrieval
Source code of our ACM MM'2022 paper [Partially Relevant Video Retrieval](https://arxiv.org/abs/2208.12510).Homepage of our paper [http://danieljf24.github.io/prvr/](http://danieljf24.github.io/prvr/).
## Table of Contents
* [Environments](#environments)
* [MS-SL on TVR](#MS-SL-on-TVR)
* [Required Data](#Required-Data)
* [Model Training](#Training)
* [Model Evaluation](#Evaluation)
* [Expected Performance](#Expected-Performance)
* [MS-SL on Activitynet](#MS-SL-on-activitynet)
* [Required Data](#Required-Data-1)
* [Model Training](#Training-1)
* [Model Evaluation](#Evaluation-1)
* [Expected Performance](#Expected-Performance-1)
* [MS-SL on Charades-STA](#MS-SL-on-Charades-STA)
* [Required Data](#Required-Data-2)
* [Model Training](#Training-2)
* [Model Evaluation](#Evaluation-2)
* [Expected Performance](#Expected-Performance-2)
* [Reference](#Reference)
* [Acknowledgement](#Acknowledgement)## Environments
* **python 3.8**
* **pytorch 1.9.0**
* **torchvision 0.10.0**
* **tensorboard 2.6.0**
* **tqdm 4.62.0**
* **easydict 1.9**
* **h5py 2.10.0**
* **cuda 11.1**We used Anaconda to setup a deep learning workspace that supports PyTorch. Run the following script to install the required packages.
```
conda create --name ms_sl python=3.8
conda activate ms_sl
git clone https://github.com/HuiGuanLab/ms-sl.git
cd ms-sl
pip install -r requirements.txt
conda deactivate
```## MS-SL on TVR
### Required Data
The data can be downloaded from [Baidu pan](https://pan.baidu.com/s/1UNu67hXCbA6ZRnFVPVyJOA?pwd=8bh4) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing). Please refer to [here](https://github.com/HuiGuanLab/ms-sl/tree/main/dataset) for more description of the dataset. Run the following script to place the data in the specified path.```
# download the data of TVR
ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH
unzip tvr.zip -d $ROOTPATH
```### Training
Run the following script to train `MS-SL` network on TVR. It will save the chechpoint that performs best on the validation set as the final model.```
#Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
source setup.shconda activate ms-sl
ROOTPATH=$HOME/VisualSearch
RUN_ID=runs_0
GPU_DEVICE_ID=0./do_tvr.sh $RUN_ID $ROOTPATH $GPU_DEVICE_ID
```
`$RUN_ID` is the name of the folder where the model is saved in.`$GPU_DEVICE_ID` is the index of the GPU where we train on.
### Evaluation
The model is placed in the directory $ROOTPATH/$DATASET/results/$MODELDIR after training. To evaluate it, please run the following script:
```
DATASET=tvr
FEATURE=i3d_resnet
ROOTPATH=$HOME/VisualSearch
MODELDIR=tvr-runs_0-2022_07_11_20_27_02./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```We also provide the trained checkpoint on TVR, run the following script to evaluate it. The model can also be downloaded from [Here](https://pan.baidu.com/s/1d70cecBvwVqYwmvobJpbGw?pwd=zxzk) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing).
```
DATASET=tvr
FEATURE=i3d_resnet
ROOTPATH=$HOME/VisualSearch
MODELDIR=checkpoint_tvrtar -xvf checkpoint_tvr.tar -C $ROOTPATH/$DATASET/results
./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```
`$DATASET` is the dataset that the model trained and evaluate on.`$FEATURE` is the video feature corresponding to the dataset.
`$MODELDIR` is the path of checkpoints saved.
### Expected performance| | R@1 | R@5 | R@10 | R@100 | SumR |
| :---------: | :--: | :--: | :--: | :---: | :---: |
| Text-to-Video | 13.5 | 32.1 | 43.4 | 83.4 | 172.3 |## MS-SL on Activitynet
### Required Data
The data can be downloaded from [Baidu pan](https://pan.baidu.com/s/1UNu67hXCbA6ZRnFVPVyJOA?pwd=8bh4) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing). Please refer to [here](https://github.com/HuiGuanLab/ms-sl/tree/main/dataset) for more description of the dataset. Run the following script to place the data in the specified path.```
ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH
unzip activitynet.zip -d $ROOTPATH
```### Training
Run the following script to train `MS-SL` network on Activitynet.
```
#Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
source setup.shconda activate ms-sl
ROOTPATH=$HOME/VisualSearch
RUN_ID=runs_0
GPU_DEVICE_ID=0./do_activitynet.sh $RUN_ID $ROOTPATH $GPU_DEVICE_ID
```### Evaluation
The model is placed in the directory $ROOTPATH/$DATASET/results/$MODELDIR after training. To evaluate it, please run the following script:
```
DATASET=activitynet
FEATURE=i3d
ROOTPATH=$HOME/VisualSearch
MODELDIR=activitynet-runs_0-2022_07_11_20_27_02./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```We also provide the trained checkpoint on Activitynet, run the following script to evaluate it. The model can also be downloaded from [Here](https://pan.baidu.com/s/10zMvaSGRyJWxGUgSPm2ySg?pwd=omgg) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing).
```
DATASET=activitynet
FEATURE=i3d
ROOTPATH=$HOME/VisualSearch
MODELDIR=checkpoint_activitynettar -xvf checkpoint_activitynet.tar -C $ROOTPATH/$DATASET/results
./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```### Expected performance
| | R@1 | R@5 | R@10 | R@100 | SumR |
| :---------: | :--: | :--: | :--: | :---: | :---: |
| Text-to-Video | 7.1 | 22.5 | 34.7 | 75.8 | 140.1 |## MS-SL on Charades-STA
### Required Data
The data can be downloaded from [Baidu pan](https://pan.baidu.com/s/1UNu67hXCbA6ZRnFVPVyJOA?pwd=8bh4) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing). Please refer to [here](https://github.com/HuiGuanLab/ms-sl/tree/main/dataset) for more description of the dataset. Run the following script to place the data in the specified path.```
ROOTPATH=$HOME/VisualSearch
mkdir -p $ROOTPATH && cd $ROOTPATH
unzip charades.zip -d $ROOTPATH
```### Training
Run the following script to train `MS-SL` network on Charades-STA.```
#Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
source setup.shconda activate ms-sl
ROOTPATH=$HOME/VisualSearch
RUN_ID=runs_0
GPU_DEVICE_ID=0./do_charades.sh $RUN_ID $ROOTPATH $GPU_DEVICE_ID
```### Evaluation
The model is placed in the directory $ROOTPATH/$DATASET/results/$MODELDIR after training. To evaluate it, please run the following script:
```
DATASET=charades
FEATURE=i3d_rgb_lgi
ROOTPATH=$HOME/VisualSearch
MODELDIR=charades-runs_0-2022_07_11_20_27_02./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```
We also provide the trained checkpoint on Charades-STA, run the following script to evaluate it. The model can also be downloaded from [Here](https://pan.baidu.com/s/1IuUI1D04gSSmfiHQwedbgg?pwd=w6mk) or [Google drive](https://drive.google.com/drive/folders/11dRUeXmsWU25VMVmeuHc9nffzmZhPJEj?usp=sharing).
```
DATASET=charades
FEATURE=i3d_rgb_lgi
ROOTPATH=$HOME/VisualSearch
MODELDIR=checkpoint_charadestar -xvf checkpoint_charades.tar -C $ROOTPATH/$DATASET/results
./do_test.sh $DATASET $FEATURE $ROOTPATH $MODELDIR
```### Expected performance
| | R@1 | R@5 | R@10 | R@100 | SumR |
| :---------: | :--: | :--: | :--: | :---: | :---: |
| Text-to-Video | 1.8 | 7.1 | 11.8 | 47.7 | 68.4 |## Reference
```
@inproceedings{dong2022prvr,
title = {Partially Relevant Video Retrieval},
author = {Jianfeng Dong and Xianke Chen and Minsong Zhang and Xun Yang and Shujie Chen and Xirong Li and Xun Wang},
booktitle = {Proceedings of the 30th ACM International Conference on Multimedia},
year = {2022},
}
```
## Acknowledgement
The codes are modified from [TVRetrieval](https://github.com/jayleicn/TVRetrieval) and [ReLoCLNet](https://github.com/IsaacChanghau/ReLoCLNet).This work was supported by the National Key R&D Program of China (2018YFB1404102), NSFC (62172420,61902347, 61976188, 62002323), the Public Welfare Technology Research Project of Zhejiang Province (LGF21F020010), the Open Projects Program of the National Laboratory of Pattern Recognition, the Fundamental Research Funds for the Provincial Universities of Zhejiang, and Public Computing Cloud of RUC.