Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/HypoX64/DeepMosaics

Automatically remove the mosaics in images and videos, or add mosaics to them.
https://github.com/HypoX64/DeepMosaics

computer-vision deep-learning mosaic pytorch video-inpainting

Last synced: 4 days ago
JSON representation

Automatically remove the mosaics in images and videos, or add mosaics to them.

Awesome Lists containing this project

README

        






# DeepMosaics

**English | [中文](./README_CN.md)**

You can use it to automatically remove the mosaics in images and videos, or add mosaics to them.
This project is based on "semantic segmentation" and "Image-to-Image Translation".
Try it at this [website](http://118.89.27.46:5000/)!

### Examples

![image](./imgs/hand.gif)

| origin | auto add mosaic | auto clean mosaic |
| :----------------------------------: | :--------------------------------------: | :----------------------------------------: |
| ![image](./imgs/example/lena.jpg) | ![image](./imgs/example/lena_add.jpg) | ![image](./imgs/example/lena_clean.jpg) |
| ![image](./imgs/example/youknow.png) | ![image](./imgs/example/youknow_add.png) | ![image](./imgs/example/youknow_clean.png) |

- Compared with [DeepCreamPy](https://github.com/deeppomf/DeepCreamPy)

| mosaic image | DeepCreamPy | ours |
| :----------------------------------------: | :--------------------------------: | :---------------------------------------: |
| ![image](./imgs/example/face_a_mosaic.jpg) | ![image](./imgs/example/a_dcp.png) | ![image](./imgs/example/face_a_clean.jpg) |
| ![image](./imgs/example/face_b_mosaic.jpg) | ![image](./imgs/example/b_dcp.png) | ![image](./imgs/example/face_b_clean.jpg) |

- Style Transfer

| origin | to Van Gogh | to winter |
| :------------------------------: | :--------------------------------------: | :--------------------------------------------: |
| ![image](./imgs/example/SZU.jpg) | ![image](./imgs/example/SZU_vangogh.jpg) | ![image](./imgs/example/SZU_summer2winter.jpg) |

An interesting example:[Ricardo Milos to cat](https://www.bilibili.com/video/BV1Q7411W7n6)

## Run DeepMosaics

You can either run DeepMosaics via a pre-built binary package, or from source.

### Try it on web

You can simply try to remove the mosaic on the **face** at this [website](http://118.89.27.46:5000/).

### Pre-built binary package

For Windows, we bulid a GUI version for easy testing.

Download this version, and a pre-trained model via [[Google Drive]](https://drive.google.com/open?id=1LTERcN33McoiztYEwBxMuRjjgxh4DEPs) [[百度云,提取码1x0a]](https://pan.baidu.com/s/10rN3U3zd5TmfGpO_PEShqQ)

- [[Help document]](./docs/exe_help.md)

- Video tutorial => [[youtube]](https://www.youtube.com/watch?v=1kEmYawJ_vk) [[bilibili]](https://www.bilibili.com/video/BV1QK4y1a7Av)

![image](./imgs/GUI.png)

Attentions:

- Requires Windows_x86_64, Windows10 is better.

- Different pre-trained models are suitable for different effects.[[Introduction to pre-trained models]](./docs/pre-trained_models_introduction.md)

- Run time depends on computers performance (GPU version has better performance but requires CUDA to be installed).

- If output video cannot be played, you can try with [potplayer](https://daumpotplayer.com/download/).

- GUI version updates slower than source.

### Run From Source

#### Prerequisites

- Linux, Mac OS, Windows
- Python 3.6+
- [ffmpeg 3.4.6](http://ffmpeg.org/)
- [Pytorch 1.0+](https://pytorch.org/)
- CPU or NVIDIA GPU + CUDA CuDNN

#### Dependencies

This code depends on opencv-python, torchvision available via pip install.

#### Clone this repo

```bash
git clone https://github.com/HypoX64/DeepMosaics.git
cd DeepMosaics
```

#### Get Pre-Trained Models

You can download pre_trained models and put them into './pretrained_models'.

[[Google Drive]](https://drive.google.com/open?id=1LTERcN33McoiztYEwBxMuRjjgxh4DEPs) [[百度云,提取码1x0a]](https://pan.baidu.com/s/10rN3U3zd5TmfGpO_PEShqQ)

[[Introduction to pre-trained models]](./docs/pre-trained_models_introduction.md)

In order to add/remove mosaic, there must be a model file `mosaic_position.pth` at `./pretrained_models/mosaic/mosaic_position.pth`

#### Install dependencies

(Optional) Create a virtual environment

```bash
virtualenv mosaic
source mosaic/bin/activate
```

Then install the dependencies

```bash
pip install -r requirements.txt
```

If you can not build `scikit-image`, running `export CFLAGS='-Wno-implicit-function-declaration` then try to rebuild.

#### Simple Example

- Add Mosaic (output media will be saved in './result')

```bash
python deepmosaic.py --media_path ./imgs/ruoruo.jpg --model_path ./pretrained_models/mosaic/add_face.pth --gpu_id 0
```

- Clean Mosaic (output media will save in './result')

```bash
python deepmosaic.py --media_path ./result/ruoruo_add.jpg --model_path ./pretrained_models/mosaic/clean_face_HD.pth --gpu_id 0
```

If you see the error `Please check mosaic_position_model_path!`, check if there is a model file named `mosaic_position.pth` at `./pretrained_models/mosaic/mosaic_position.pth`

#### More Parameters

If you want to test other images or videos, please refer to this file.

[[options_introduction.md]](./docs/options_introduction.md)

## Training With Your Own Dataset

If you want to train with your own dataset, please refer to [training_with_your_own_dataset.md](./docs/training_with_your_own_dataset.md)

## Acknowledgements

This code borrows heavily from [[pytorch-CycleGAN-and-pix2pix]](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) [[Pytorch-UNet]](https://github.com/milesial/Pytorch-UNet) [[pix2pixHD]](https://github.com/NVIDIA/pix2pixHD) [[BiSeNet]](https://github.com/ooooverflow/BiSeNet) [[DFDNet]](https://github.com/csxmli2016/DFDNet) [[GFRNet_pytorch_new]](https://github.com/sonack/GFRNet_pytorch_new).