Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/HypoX64/DeepMosaics
Automatically remove the mosaics in images and videos, or add mosaics to them.
https://github.com/HypoX64/DeepMosaics
computer-vision deep-learning mosaic pytorch video-inpainting
Last synced: 4 days ago
JSON representation
Automatically remove the mosaics in images and videos, or add mosaics to them.
- Host: GitHub
- URL: https://github.com/HypoX64/DeepMosaics
- Owner: HypoX64
- License: gpl-3.0
- Created: 2019-03-05T17:25:47.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-08-30T23:56:47.000Z (2 months ago)
- Last Synced: 2024-10-29T15:32:55.594Z (12 days ago)
- Topics: computer-vision, deep-learning, mosaic, pytorch, video-inpainting
- Language: Python
- Homepage:
- Size: 3.94 MB
- Stars: 2,108
- Watchers: 42
- Forks: 439
- Open Issues: 104
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DeepMosaics
**English | [中文](./README_CN.md)**
You can use it to automatically remove the mosaics in images and videos, or add mosaics to them.
This project is based on "semantic segmentation" and "Image-to-Image Translation".
Try it at this [website](http://118.89.27.46:5000/)!### Examples
![image](./imgs/hand.gif)
| origin | auto add mosaic | auto clean mosaic |
| :----------------------------------: | :--------------------------------------: | :----------------------------------------: |
| ![image](./imgs/example/lena.jpg) | ![image](./imgs/example/lena_add.jpg) | ![image](./imgs/example/lena_clean.jpg) |
| ![image](./imgs/example/youknow.png) | ![image](./imgs/example/youknow_add.png) | ![image](./imgs/example/youknow_clean.png) |- Compared with [DeepCreamPy](https://github.com/deeppomf/DeepCreamPy)
| mosaic image | DeepCreamPy | ours |
| :----------------------------------------: | :--------------------------------: | :---------------------------------------: |
| ![image](./imgs/example/face_a_mosaic.jpg) | ![image](./imgs/example/a_dcp.png) | ![image](./imgs/example/face_a_clean.jpg) |
| ![image](./imgs/example/face_b_mosaic.jpg) | ![image](./imgs/example/b_dcp.png) | ![image](./imgs/example/face_b_clean.jpg) |- Style Transfer
| origin | to Van Gogh | to winter |
| :------------------------------: | :--------------------------------------: | :--------------------------------------------: |
| ![image](./imgs/example/SZU.jpg) | ![image](./imgs/example/SZU_vangogh.jpg) | ![image](./imgs/example/SZU_summer2winter.jpg) |An interesting example:[Ricardo Milos to cat](https://www.bilibili.com/video/BV1Q7411W7n6)
## Run DeepMosaics
You can either run DeepMosaics via a pre-built binary package, or from source.
### Try it on web
You can simply try to remove the mosaic on the **face** at this [website](http://118.89.27.46:5000/).
### Pre-built binary package
For Windows, we bulid a GUI version for easy testing.
Download this version, and a pre-trained model via [[Google Drive]](https://drive.google.com/open?id=1LTERcN33McoiztYEwBxMuRjjgxh4DEPs) [[百度云,提取码1x0a]](https://pan.baidu.com/s/10rN3U3zd5TmfGpO_PEShqQ)- [[Help document]](./docs/exe_help.md)
- Video tutorial => [[youtube]](https://www.youtube.com/watch?v=1kEmYawJ_vk) [[bilibili]](https://www.bilibili.com/video/BV1QK4y1a7Av)![image](./imgs/GUI.png)
Attentions:- Requires Windows_x86_64, Windows10 is better.
- Different pre-trained models are suitable for different effects.[[Introduction to pre-trained models]](./docs/pre-trained_models_introduction.md)
- Run time depends on computers performance (GPU version has better performance but requires CUDA to be installed).
- If output video cannot be played, you can try with [potplayer](https://daumpotplayer.com/download/).
- GUI version updates slower than source.### Run From Source
#### Prerequisites
- Linux, Mac OS, Windows
- Python 3.6+
- [ffmpeg 3.4.6](http://ffmpeg.org/)
- [Pytorch 1.0+](https://pytorch.org/)
- CPU or NVIDIA GPU + CUDA CuDNN#### Dependencies
This code depends on opencv-python, torchvision available via pip install.
#### Clone this repo
```bash
git clone https://github.com/HypoX64/DeepMosaics.git
cd DeepMosaics
```#### Get Pre-Trained Models
You can download pre_trained models and put them into './pretrained_models'.
[[Google Drive]](https://drive.google.com/open?id=1LTERcN33McoiztYEwBxMuRjjgxh4DEPs) [[百度云,提取码1x0a]](https://pan.baidu.com/s/10rN3U3zd5TmfGpO_PEShqQ)
[[Introduction to pre-trained models]](./docs/pre-trained_models_introduction.md)In order to add/remove mosaic, there must be a model file `mosaic_position.pth` at `./pretrained_models/mosaic/mosaic_position.pth`
#### Install dependencies
(Optional) Create a virtual environment
```bash
virtualenv mosaic
source mosaic/bin/activate
```Then install the dependencies
```bash
pip install -r requirements.txt
```If you can not build `scikit-image`, running `export CFLAGS='-Wno-implicit-function-declaration` then try to rebuild.
#### Simple Example
- Add Mosaic (output media will be saved in './result')
```bash
python deepmosaic.py --media_path ./imgs/ruoruo.jpg --model_path ./pretrained_models/mosaic/add_face.pth --gpu_id 0
```- Clean Mosaic (output media will save in './result')
```bash
python deepmosaic.py --media_path ./result/ruoruo_add.jpg --model_path ./pretrained_models/mosaic/clean_face_HD.pth --gpu_id 0
```If you see the error `Please check mosaic_position_model_path!`, check if there is a model file named `mosaic_position.pth` at `./pretrained_models/mosaic/mosaic_position.pth`
#### More Parameters
If you want to test other images or videos, please refer to this file.
[[options_introduction.md]](./docs/options_introduction.md)## Training With Your Own Dataset
If you want to train with your own dataset, please refer to [training_with_your_own_dataset.md](./docs/training_with_your_own_dataset.md)
## Acknowledgements
This code borrows heavily from [[pytorch-CycleGAN-and-pix2pix]](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) [[Pytorch-UNet]](https://github.com/milesial/Pytorch-UNet) [[pix2pixHD]](https://github.com/NVIDIA/pix2pixHD) [[BiSeNet]](https://github.com/ooooverflow/BiSeNet) [[DFDNet]](https://github.com/csxmli2016/DFDNet) [[GFRNet_pytorch_new]](https://github.com/sonack/GFRNet_pytorch_new).