Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Hyuto/yolov5-tfjs

YOLOv5 right in your browser with tensorflow.js
https://github.com/Hyuto/yolov5-tfjs

object-detection react tensorflowjs webapp yolov5

Last synced: 3 months ago
JSON representation

YOLOv5 right in your browser with tensorflow.js

Awesome Lists containing this project

README

        

# Object Detection using YOLOv5 and Tensorflow.js



![love](https://img.shields.io/badge/Made%20with-🖤-white)
![tensorflow.js](https://img.shields.io/badge/tensorflow.js-white?logo=tensorflow)

---

[**More Feature Version**](https://hyuto.github.io/showcase/yolov5-tfjs)

---

Object Detection application right in your browser. Serving YOLOv5 in browser using tensorflow.js
with `webgl` backend.

**Setup**

```bash
git clone https://github.com/Hyuto/yolov5-tfjs.git
cd yolov5-tfjs
yarn install #Install dependencies
```

**Scripts**

```bash
yarn start # Start dev server
yarn build # Build for productions
```

## Model

YOLOv5n model converted to tensorflow.js.

```
used model : yolov5n
size : 7.5 Mb
```

**Use another model**

Use another YOLOv5 model.

1. Clone [yolov5](https://github.com/ultralytics/yolov5) repository

```bash
git clone https://github.com/ultralytics/yolov5.git && cd yolov5
```

Install `requirements.txt` first

```bash
pip install -r requirements.txt
```

2. Export model to tensorflow.js format
```bash
export.py --weights yolov5*.pt --include tfjs
```
3. Copy `yolov5*_web_model` to `./public`
4. Update `modelName` in `App.jsx` to new model name
```jsx
...
// model configs
const modelName = "yolov5*"; // change to new model name
const classThreshold = 0.25;
...
```
5. Done! 😊

## Reference

https://github.com/ultralytics/yolov5