Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Image-X-Institute/TopasOpt
Optimisation for topas Monte Carlo
https://github.com/Image-X-Institute/TopasOpt
medical-physics optimization radiation-transport topasmc
Last synced: about 1 month ago
JSON representation
Optimisation for topas Monte Carlo
- Host: GitHub
- URL: https://github.com/Image-X-Institute/TopasOpt
- Owner: Image-X-Institute
- License: mit
- Created: 2022-02-04T05:25:27.000Z (almost 3 years ago)
- Default Branch: master
- Last Pushed: 2024-03-26T23:11:29.000Z (9 months ago)
- Last Synced: 2024-10-31T17:09:45.045Z (about 1 month ago)
- Topics: medical-physics, optimization, radiation-transport, topasmc
- Language: Python
- Homepage: https://image-x-institute.github.io/TopasOpt/
- Size: 40.4 MB
- Stars: 6
- Watchers: 1
- Forks: 1
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome-medphys - TopasOpt - ![Static Badge](https://img.shields.io/badge/Python-stuff?style=flat&logo=python&color=lime) provides a framework for performing optimisation on monte carlo radiation transport simulations using [TOPAS](https://www.google.com/search?channel=fs&client=ubuntu&q=topas+MC). [![PyPI version](https://badge.fury.io/py/TopasOpt.svg)](https://badge.fury.io/py/TopasOpt) (Libraries)
README
# TopasOpt
![](docsrc/_resources/interrogate_badge.svg) [![codecov](https://codecov.io/gh/Image-X-Institute/TopasOpt/graph/badge.svg?token=0FSEO19LCD)](https://codecov.io/gh/Image-X-Institute/TopasOpt)![test](https://github.com/ACRF-Image-X-Institute/TopasOpt/actions/workflows/run_tests.yml/badge.svg) ![docs](https://github.com/ACRF-Image-X-Institute/TopasOpt/actions/workflows/build-docs.yml/badge.svg)[![PyPI version](https://badge.fury.io/py/TopasOpt.svg)](https://badge.fury.io/py/TopasOpt)
This code provides a framework for performing optimisation on monte carlo radiation transport
simulations using [TOPAS](https://www.google.com/search?channel=fs&client=ubuntu&q=topas+MC).## Install and Requirements
To install: ```pip install TopasOpt```
- You require a working installation of [topas](https://topas.readthedocs.io/en/latest/getting-started/intro.html) to run the code.
- This code will only run on linux or mac (as will topas)
- python3.8 or greater is required.## Usage and Documentation
Detailed documentation is provided [here](https://image-x-institute.github.io/TopasOpt/)
The source code for the [worked examples](https://image-x-institute.github.io/TopasOpt/worked_examples.html) is inside the examples folder.## Directory Structure
- **TopasOpt:** source code
- **examples:** source code for the [worked examples](https://image-x-institute.github.io/TopasOpt/worked_examples.html) provided in the docs
- **docsrc:** markdown/rst documentation.
- **tests:** tests which are run through github actions## Citation
This code is described in [this paper](https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16126).
If you use this code in your work, please cite this paper!```bibtex
@article{whelan_topasopt_2022,
title = {{TopasOpt}: {An} open-source library for optimization with {Topas} {Monte} {Carlo}},
shorttitle = {{TopasOpt}},
journal = {Medical Physics},
author = {Whelan, Brendan and Loo Jr, Billy W. and Wang, Jinghui and Keall, Paul},
year = {2022},
note = {Publisher: Wiley Online Library},
}
```