Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/JiahuiYu/slimmable_networks
Slimmable Networks, AutoSlim, and Beyond, ICLR 2019, and ICCV 2019
https://github.com/JiahuiYu/slimmable_networks
adaptive automated edge-devices efficient neural-architecture-search on-demand slimmable-networks
Last synced: about 2 months ago
JSON representation
Slimmable Networks, AutoSlim, and Beyond, ICLR 2019, and ICCV 2019
- Host: GitHub
- URL: https://github.com/JiahuiYu/slimmable_networks
- Owner: JiahuiYu
- License: other
- Created: 2018-11-21T03:47:34.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-03-09T08:37:20.000Z (almost 2 years ago)
- Last Synced: 2024-11-09T10:44:28.727Z (2 months ago)
- Topics: adaptive, automated, edge-devices, efficient, neural-architecture-search, on-demand, slimmable-networks
- Language: Python
- Homepage:
- Size: 321 KB
- Stars: 910
- Watchers: 29
- Forks: 131
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-AutoML-and-Lightweight-Models - JiahuiYu/slimmable_networks
README
# Slimmable Networks
![version](https://img.shields.io/badge/version-v3.0.0--alpha-green.svg?style=plastic)
![pytorch](https://img.shields.io/badge/pytorch-v1.0.0-green.svg?style=plastic)
![license](https://img.shields.io/badge/license-CC_BY--NC-green.svg?style=plastic)An open source framework for slimmable training on tasks of ImageNet classification and COCO detection, which has enabled numerous projects. [1](#snets), [2](#usnets), [3](#autoslim)
1. Slimmable Neural Networks [ICLR 2019 Paper](https://arxiv.org/abs/1812.08928) | [OpenReview](https://openreview.net/forum?id=H1gMCsAqY7) | [Detection](https://github.com/JiahuiYu/slimmable_networks/tree/detection) | [Model Zoo](#slimmable-model-zoo)
Illustration of slimmable neural networks. The same model can run at different widths (number of active channels), permitting instant and adaptive accuracy-efficiency trade-offs.
2. Universally Slimmable Networks and Improved Training Techniques [ICCV 2019 Paper](https://arxiv.org/abs/1903.05134) | [Model Zoo](#slimmable-model-zoo)
Illustration of universally slimmable networks. The same model can run at **arbitrary** widths.
3. AutoSlim: Towards One-Shot Architecture Search for Channel Numbers [NeurIPS 2019 Workshop Paper](https://arxiv.org/abs/1903.11728) | [Model Zoo](#slimmable-model-zoo)
AutoSlimming MobileNet v1, MobileNet v2, MNasNet and ResNet-50: the optimized number of channels under **each** computational budget (FLOPs).
## Run
0. Requirements:
* python3, pytorch 1.0, torchvision 0.2.1, pyyaml 3.13.
* Prepare ImageNet-1k data following pytorch [example](https://github.com/pytorch/examples/tree/master/imagenet).
1. Training and Testing:
* The codebase is a general ImageNet training framework using yaml config under `apps` dir, based on PyTorch.
* To test, download pretrained models to `logs` dir and directly run command.
* To train, comment `test_only` and `pretrained` in config file. You will need to manage [visible gpus](https://devblogs.nvidia.com/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/) by yourself.
* Command: `python train.py app:{apps/***.yml}`. `{apps/***.yml}` is config file. Do not miss `app:` prefix.
* Training and testing of MSCOCO benchmarks are released under branch [detection](https://github.com/JiahuiYu/slimmable_networks/tree/detection).
2. Still have questions?
* If you still have questions, please search closed issues first. If the problem is not solved, please open a new.## Slimmable Model Zoo
**[Slimmable Neural Networks](https://arxiv.org/abs/1812.08928)**
| Model | Switches (Widths) | Top-1 Err. | FLOPs | Model ID |
| :--- | :---: | :---: | ---: | :---: |
| S-MobileNet v1 | 1.00
0.75
0.50
0.25 | 28.5
30.5
35.2
46.9 | 569M
325M
150M
41M | [a6285db](https://github.com/JiahuiYu/slimmable_networks/files/2709079/s_mobilenet_v1_0.25_0.5_0.75_1.0.pt.zip) |
| S-MobileNet v2 | 1.00
0.75
0.50
0.35 | 29.5
31.1
35.6
40.3 | 301M
209M
97M
59M | [0593ffd](https://github.com/JiahuiYu/slimmable_networks/files/2709080/s_mobilenet_v2_0.35_0.5_0.75_1.0.pt.zip) |
| S-ShuffleNet | 2.00
1.00
0.50 | 28.6
34.5
42.8 | 524M
138M
38M | [1427f66](https://github.com/JiahuiYu/slimmable_networks/files/2709082/s_shufflenet_0.5_1.0_2.0.pt.zip) |
| S-ResNet-50 | 1.00
0.75
0.50
0.25 | 24.0
25.1
27.9
35.0 | 4.1G
2.3G
1.1G
278M | [3fca9cc](https://drive.google.com/open?id=1f6q37OkZaz_0GoOAwllHlXNWuKwor2fC) |**[Universally Slimmable Networks and Improved Training Techniques](https://arxiv.org/abs/1903.05134)**
| Model | Model ID | Spectrum | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| :- | :-: | :- | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| US‑MobileNet v1 | [13d5af2](https://github.com/JiahuiYu/slimmable_networks/files/2979952/us_mobilenet_v1_calibrated.pt.zip) | Width
MFLOPs
Top-1 Err. | 1.0
568
28.2 | 0.975
543
28.3 | 0.95
517
28.4 | 0.925
490
28.7 | 0.9
466
28.7 | 0.875
443
29.1 | 0.85
421
29.4 | 0.825
389
29.7 | 0.8
366
30.2 | 0.775
345
30.3 | 0.75
325
30.5 | 0.725
306
30.9 | 0.7
287
31.2 | 0.675
267
31.7 | 0.65
249
32.2 | 0.625
232
32.5 | 0.6
217
33.2 | 0.575
201
33.7 | 0.55
177
34.4 | 0.525
162
35.0 | 0.5
149
35.8 | 0.475
136
36.5 | 0.45
124
37.3 | 0.425
114
38.1 | 0.4
100
39.0 | 0.375
89
40.0 | 0.35
80
41.0 | 0.325
71
41.9 | 0.3
64
42.7 | 0.275
48
44.2 | 0.25
41
44.3 |
| US‑MobileNet v2 | [3880cad](https://github.com/JiahuiYu/slimmable_networks/files/2979953/us_mobilenet_v2_calibrated.pt.zip) | Width
MFLOPs
Top-1 Err. | 1.0
300
28.5 | 0.975
299
28.5 | 0.95
284
28.8 | 0.925
274
28.9 | 0.9
269
29.1 | 0.875
268
29.1 | 0.85
254
29.4 | 0.825
235
29.9 | 0.8
222
30.0 | 0.775
213
30.2 | 0.75
209
30.4 | 0.725
185
30.7 | 0.7
173
31.1 | 0.675
165
31.4 | 0.65
161
31.7 | 0.625
161
31.7 | 0.6
151
32.4 | 0.575
150
32.4 | 0.55
106
34.4 | 0.525
100
34.6 | 0.5
97
34.9 | 0.475
96
35.1 | 0.45
88
35.8 | 0.425
88
35.8 | 0.4
80
36.6 | 0.375
80
36.7 | 0.35
59
37.7 |**[AutoSlim: Towards One-Shot Architecture Search for Channel Numbers](https://arxiv.org/abs/1903.11728)**
| Model | Top-1 Err. | FLOPs | Model ID |
| :--- | :---: | ---: | :---: |
| AutoSlim-MobileNet v1 | 27.0
28.5
32.1 | 572M
325M
150M | [9b0b1ab](https://github.com/JiahuiYu/slimmable_networks/files/5166182/autoslim_mobilenet_v1.pt.zip) |
| AutoSlim-MobileNet v2 | 24.6
25.8
27.0 | 505M
305M
207M | [a24f1f2](https://github.com/JiahuiYu/slimmable_networks/files/5166194/autoslim_mobilenet_v2.pt.zip) |
| AutoSlim-MNasNet | 24.6
25.4
26.8 | 532M
315M
217M | [31477c9](https://drive.google.com/file/d/1tEuMYc_F-4MUYPua8KAIKjEd7eJDVSx2) |
| AutoSlim-ResNet-50 | 24.0
24.4
26.0
27.8 | 3.0G
2.0G
1.0G
570M | [f95f419](https://drive.google.com/file/d/1WOOu6frdfGo1_nyHdaMpRILPATtzVAMT) |## Technical Details
Implementing slimmable networks and slimmable training is straightforward:
* Switchable batchnorm and slimmable layers are implemented in [`models/slimmable_ops`](/models/slimmable_ops.py).
* Slimmable training is implemented in [these lines](https://github.com/JiahuiYu/slimmable_networks/blob/aeb10c9f437208603145e073ee730f0d7dbfa80f/train.py#L281-L289) in [`train.py`](/train.py).## License
CC 4.0 Attribution-NonCommercial International
The software is for educaitonal and academic research purpose only.