Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/JimLiu96/FederatedRS

Papers related to federated learning for recommender system
https://github.com/JimLiu96/FederatedRS

Last synced: 2 months ago
JSON representation

Papers related to federated learning for recommender system

Awesome Lists containing this project

README

        

# Federated Learning Survey
| Year | Title | Venue | Code |
|-------|--------|--------|-----------|
| 2021 | [Advances and Open Problems in Federated Learning](https://arxiv.org/pdf/1912.04977.pdf) | FTML | Link |
| 2019 | [Federated Machine Learning: Concept and Applications](https://dl.acm.org/doi/pdf/10.1145/3298981) | TIST | Link |

# Federated Learning Papers
| Year | Title | Venue | Code |
|-------|--------|--------|-----------|
| 2021 | [Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data](https://arxiv.org/pdf/2006.06983.pdf) | The Web | Link |
| 2021 | [Hierarchical Federated Learning through LAN-WAN Orchestration](https://arxiv.org/pdf/2010.11612.pdf) | The Web | Link |
| 2020 | [Think Locally, Act Globally: Federated Learning with Local and Global Representations](https://arxiv.org/pdf/2001.01523.pdf) | NeurIPS workshop | Link |
| 2020 | [Personalized Federated Learning: A Meta-Learning Approach](https://arxiv.org/pdf/2002.07948.pdf) | NeurIPS | Link |
| 2017 | [Communication-Efficient Learning of Deep Networks from Decentralized Data](http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf) | AISTATS | [Link](https://github.com/shaoxiongji/federated-learning) |

# Federated Recommender System
| Year | Title | Venue | Code |
|-------|--------|--------|-----------|
| 2021 | [DeepRec: On-device Deep Learning for Privacy-Preserving Sequential Recommendation in Mobile Commerce](__) [\[Video\]](https://www.youtube.com/watch?v=2J61s9xXTPo) | The Web | Link |
| 2021 | [FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation](https://arxiv.org/abs/2102.04925) | arxiv | Link |
| 2020 | [Robust Federated Recommendation System](https://arxiv.org/pdf/2006.08259.pdf) | arxiv | Link |
| 2020 | [FEDERATED MULTI-VIEW MATRIX FACTORIZATION FOR PERSONALIZED RECOMMENDATIONS](https://arxiv.org/pdf/2004.04256.pdf) | arxiv | Link |
| 2020 | [Secure Federated Matrix Factorization](https://arxiv.org/pdf/1906.05108.pdf) | Int. Sys. | [CODE](https://github.com/Di-Chai/FedMF) |
| 2020 | [Privacy-Preserving News Recommendation Model Learning](https://arxiv.org/pdf/2003.09592.pdf) | EMNLP-Findings | [CODE](https://github.com/JulySinceAndrew/FedNewsRec-EMNLP-Findings-2020) |
| 2019 | [FEDERATED COLLABORATIVE FILTERING FOR PRIVACY-PRESERVING PERSONALIZED RECOMMENDATION SYSTEM](https://arxiv.org/pdf/1901.09888.pdf) | arxiv | Link |
| 2019 | [Federating Recommendations Using Differentially Private Prototypes](https://arxiv.org/pdf/2003.00602.pdf) | arxiv | Link |

## Useful Resources
- https://github.com/poga/awesome-federated-learning
- https://github.com/tensorflow/federated
- https://github.com/AshwinRJ/Federated-Learning-PyTorch
- Flower https://flower.dev/
- PySyft https://github.com/OpenMined/PySyft
- Tensorflow Federated https://www.tensorflow.org/federated
- CrypTen https://github.com/facebookresearch/CrypTen
- FATE https://fate.fedai.org/
- DVC https://dvc.org/
- LEAF https://leaf.cmu.edu/
- Federated iNaturalist/Landmarkds https://github.com/google-research/google-research/tree/master/federated_vision_datasets
- FedML: A Research Library and Benchmark for Federated Machine Learning https://github.com/FedML-AI/FedML
- XayNet: Open source framework for federated learning in Rust https://xaynet.webflow.io/

## Use-cases

MIT CSAIL/Harvard Medical/Tsinghua University’s Academy of Arts and Design

* https://arxiv.org/ftp/arxiv/papers/1903/1903.09296.pdf
* https://venturebeat.com/2019/03/25/federated-learning-technique-predicts-hospital-stay-and-patient-mortality/

Microsoft research/University of Chinese Academy of Sciences, Beijing, China

* https://arxiv.org/pdf/1907.09173.pdf

Boston University/Massachusetts General Hospital

* https://www.ncbi.nlm.nih.gov/pubmed/29500022

Google

* https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
* https://www.statnews.com/2019/09/10/google-mayo-clinic-partnership-patient-data/

Tencent WeBank

* https://www.digfingroup.com/webank-clustar/

Nvidia/King’s College London, American College of Radiology, MGH and BWH Center for Clinical Data Science, and UCLA Health... etc

* https://venturebeat.com/2019/10/13/nvidia-uses-federated-learning-to-create-medical-imaging-ai/
* https://blogs.nvidia.com/blog/2019/12/01/clara-federated-learning/