Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/JinjingZhu/PMTrans
https://github.com/JinjingZhu/PMTrans
Last synced: 7 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/JinjingZhu/PMTrans
- Owner: JinjingZhu
- Created: 2023-05-26T15:10:58.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-06-06T07:33:20.000Z (over 1 year ago)
- Last Synced: 2024-08-02T15:26:04.838Z (3 months ago)
- Language: Python
- Size: 4.18 MB
- Stars: 45
- Watchers: 2
- Forks: 7
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PMTrans
Patch-Mix Transformer for Unsupervised Domain Adaptation: A Game Perspective### CVPR 2023 Highlight
### There are some typos in results on the DomainNet dataset. And we revise these typos in the [newest version](https://arxiv.org/abs/2303.13434). Please check it.
This is a rough version, I will continue to polish it.
### Pretrained Swin-B
- Download [swin_base_patch4_window7_224_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth) and put it into `pretrained_models`
### Install
- Create a conda virtual environment and activate it:
```bash
conda create -n swin python=3.7 -y
conda activate swin
```- Install `CUDA==10.1` with `cudnn7` following
the [official installation instructions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)
- Install `PyTorch==1.7.1` and `torchvision==0.8.2` with `CUDA==10.1`:```bash
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
```- Install `timm==0.3.2`:
```bash
pip install timm==0.3.2
pip install tensorboard
```- Install `Apex`:
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir ./
https://github.com/NVIDIA/apex/issues/1227
```- Install other requirements:
```bash
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8
```### Datasets:
- Download the `Office31, Office Home, VisDA and Domainnet` Make a file recording the path and label of image like txt files in `datasets/office_home/`
```bash
$ tree data
datasets
├── ofice_home
│ ├── Art.txt
│ ├── Clipart.txt
│ ├── Product.txt
│ ├── Real_World.txt
└── ...
```### Training:
bash dist_train.sh