Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/JordanAsh/boostresnet
A PyTorch implementation of BoostResNet
https://github.com/JordanAsh/boostresnet
Last synced: about 1 month ago
JSON representation
A PyTorch implementation of BoostResNet
- Host: GitHub
- URL: https://github.com/JordanAsh/boostresnet
- Owner: JordanAsh
- Created: 2018-03-03T05:58:03.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-03-03T06:36:19.000Z (almost 7 years ago)
- Last Synced: 2024-08-02T03:02:35.516Z (4 months ago)
- Language: Python
- Homepage:
- Size: 2.61 MB
- Stars: 5
- Watchers: 3
- Forks: 4
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-gradient-boosting-papers - [Code
README
# BoostResNet
This repository contains a simple PyTorch implementation of the article [Learning Deep ResNet Blocks Sequentially using Boosting Theory](https://arxiv.org/abs/1706.04964).
The program `brn.py` assumes the existence of a dataset in torch format that is already normalized. It uses a 50-layer ResNet architecture from [Facebook](https://github.com/facebook/fb.resnet.torch) that takes 32 x 32 images as input, but can easily be modified to accomodate other architectures.
`python brn.py --data CIFAR.t7 --transform`