An open API service indexing awesome lists of open source software.

https://github.com/JunweiZheng93/APES

Official repository for paper "Attention-based Point Cloud Edge Sampling" (APES), Highlight@CVPR 2023
https://github.com/JunweiZheng93/APES

attention-based downsampling edge-points point-cloud

Last synced: about 1 month ago
JSON representation

Official repository for paper "Attention-based Point Cloud Edge Sampling" (APES), Highlight@CVPR 2023

Awesome Lists containing this project

README

        

# APES: Attention-based Point Cloud Edge Sampling












[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/attention-based-point-cloud-edge-sampling/3d-point-cloud-classification-on-modelnet40)](https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40?p=attention-based-point-cloud-edge-sampling)

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/attention-based-point-cloud-edge-sampling/3d-part-segmentation-on-shapenet-part)](https://paperswithcode.com/sota/3d-part-segmentation-on-shapenet-part?p=attention-based-point-cloud-edge-sampling)

## Homepage

This project is selected as a Highlight at CVPR 2023! For more information about the project, please refer to our [project homepage](https://junweizheng93.github.io/publications/APES/APES.html).

## Prerequisites

Install all necessary packages using:

```shell
conda create -n APES python=3.9 -y
conda activate APES
conda install pytorch==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia -y
pip install -r requirements.txt
```

## Data

Download and preprocess the data using:

```shell
python utils/download_modelnet.py # for classification
python utils/download_shapenet.py # for segmentation
```

## Train

Train models from scratch using:

```shell
# using single GPU
# command: bash utils/single_gpu_train.sh cfg_file
bash utils/single_gpu_train.sh configs/apes/apes_cls_local-modelnet-200epochs.py # for classification using local-based downsampling
bash utils/single_gpu_train.sh configs/apes/apes_cls_global-modelnet-200epochs.py # for classification using global-based downsampling
bash utils/single_gpu_train.sh configs/apes/apes_seg_local-shapenet-200epochs.py # for segmentation using local-based downsampling
bash utils/single_gpu_train.sh configs/apes/apes_seg_global-shapenet-200epochs.py # for segmentation using global-based downsampling

# using multiple GPUs
# command: bash utils/dist_train.sh cfg_file num_gpus
bash utils/dist_train.sh configs/apes/apes_cls_local-modelnet-200epochs.py 2 # for classification using local-based downsampling
bash utils/dist_train.sh configs/apes/apes_cls_global-modelnet-200epochs.py 2 # for classification using global-based downsampling
bash utils/dist_train.sh configs/apes/apes_seg_local-shapenet-200epochs.py 2 # for segmentation using local-based downsampling
bash utils/dist_train.sh configs/apes/apes_seg_global-shapenet-200epochs.py 2 # for segmentation using global-based downsampling
```

## Test

Test model with checkpoint using:

```shell
# using single GPU
# command: bash utils/single_gpu_test.sh cfg_file ckpt_path
bash utils/single_gpu_test.sh configs/apes/apes_cls_local-modelnet-200epochs.py ckpt_path # for classification using local-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_cls_global-modelnet-200epochs.py ckpt_path # for classification using global-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_seg_local-shapenet-200epochs.py ckpt_path # for segmentation using local-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_seg_global-shapenet-200epochs.py ckpt_path # for segmentation using global-based downsampling

# using multiple GPUs
# command: bash utils/dist_test.sh cfg_file ckpt_path num_gpus
bash utils/dist_test.sh configs/apes/apes_cls_local-modelnet-200epochs.py ckpt_path 2 # for classification using local-based downsampling
bash utils/dist_test.sh configs/apes/apes_cls_global-modelnet-200epochs.py ckpt_path 2 # for classification using global-based downsampling
bash utils/dist_test.sh configs/apes/apes_seg_local-shapenet-200epochs.py ckpt_path 2 # for segmentation using local-based downsampling
bash utils/dist_test.sh configs/apes/apes_seg_global-shapenet-200epochs.py ckpt_path 2 # for segmentation using global-based downsampling
```

## Visualization

Visualize results with checkpoint using:

```shell
# using single GPU
# command: bash utils/single_gpu_test.sh cfg_file ckpt_path -vis
bash utils/single_gpu_test.sh configs/apes/apes_cls_local-modelnet-200epochs.py ckpt_path -vis # for classification using local-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_cls_global-modelnet-200epochs.py ckpt_path -vis # for classification using global-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_seg_local-shapenet-200epochs.py ckpt_path -vis # for segmentation using local-based downsampling
bash utils/single_gpu_test.sh configs/apes/apes_seg_global-shapenet-200epochs.py ckpt_path -vis # for segmentation using global-based downsampling

# using multiple GPUs
# command: bash utils/dist_test.sh cfg_file ckpt_path num_gpus -vis
bash utils/dist_test.sh configs/apes/apes_cls_local-modelnet-200epochs.py ckpt_path 2 -vis # for classification using local-based downsampling
bash utils/dist_test.sh configs/apes/apes_cls_global-modelnet-200epochs.py ckpt_path 2 -vis # for classification using global-based downsampling
bash utils/dist_test.sh configs/apes/apes_seg_local-shapenet-200epochs.py ckpt_path 2 -vis # for segmentation using local-based downsampling
bash utils/dist_test.sh configs/apes/apes_seg_global-shapenet-200epochs.py ckpt_path 2 -vis # for segmentation using global-based downsampling
```

## Citation

If you are interested in this work, please cite as below:

```text
@inproceedings{wu_2023_attention,
author={Wu, Chengzhi and Zheng, Junwei and Pfrommer, Julius and Beyerer, J\"urgen},
title={Attention-Based Point Cloud Edge Sampling},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023}
}
```