Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Kagami/go-face
:mag: Face recognition with Go
https://github.com/Kagami/go-face
dlib face-recognition golang
Last synced: 3 months ago
JSON representation
:mag: Face recognition with Go
- Host: GitHub
- URL: https://github.com/Kagami/go-face
- Owner: Kagami
- License: cc0-1.0
- Created: 2018-04-02T16:58:01.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2024-07-30T07:06:41.000Z (6 months ago)
- Last Synced: 2024-10-22T10:30:44.969Z (3 months ago)
- Topics: dlib, face-recognition, golang
- Language: Go
- Homepage:
- Size: 87.9 KB
- Stars: 1,114
- Watchers: 34
- Forks: 170
- Open Issues: 44
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: COPYING
Awesome Lists containing this project
- stars - Kagami/go-face
- my-awesome - Kagami/go-face - recognition,golang pushed_at:2024-07 star:1.1k fork:0.2k :mag: Face recognition with Go (Go)
- go-awesome - go-face - face recognition (Open source library / Graphics Processing)
README
# go-face [![Build Status](https://travis-ci.org/Kagami/go-face.svg?branch=master)](https://travis-ci.org/Kagami/go-face) [![GoDoc](https://godoc.org/github.com/Kagami/go-face?status.svg)](https://godoc.org/github.com/Kagami/go-face)
go-face implements face recognition for Go using [dlib](http://dlib.net), a
popular machine learning toolkit. Read
[Face recognition with Go](https://hackernoon.com/face-recognition-with-go-676a555b8a7e)
article for some background details if you're new to
[FaceNet](https://arxiv.org/abs/1503.03832) concept.## Requirements
To compile go-face you need to have dlib (>= 19.10) and libjpeg development
packages installed.### Ubuntu 18.10+, Debian sid
Latest versions of Ubuntu and Debian provide suitable dlib package so just run:
```bash
# Ubuntu
sudo apt-get install libdlib-dev libblas-dev libatlas-base-dev liblapack-dev libjpeg-turbo8-dev
# Debian
sudo apt-get install libdlib-dev libblas-dev libatlas-base-dev liblapack-dev libjpeg62-turbo-dev
```### macOS
Make sure you have [Homebrew](https://brew.sh) installed.
```bash
brew install dlib
```### Windows
Make sure you have [MSYS2](https://www.msys2.org) installed.
1. Run `MSYS2 MSYS` shell from Start menu
2. Run `pacman -Syu` and if it asks you to close the shell do that
3. Run `pacman -Syu` again
4. Run `pacman -S mingw-w64-x86_64-gcc mingw-w64-x86_64-dlib`
5.
1. If you already have Go and Git installed and available in PATH uncomment
`set MSYS2_PATH_TYPE=inherit` line in `msys2_shell.cmd` located in MSYS2
installation folder
2. Otherwise run `pacman -S mingw-w64-x86_64-go git`
6. Run `MSYS2 MinGW 64-bit` shell from Start menu to compile and use go-face### Other systems
Try to install dlib/libjpeg with package manager of your distribution or
[compile from sources](http://dlib.net/compile.html). Note that go-face won't
work with old packages of dlib such as libdlib18. Alternatively create issue
with the name of your system and someone might help you with the installation
process.## Models
Currently `shape_predictor_5_face_landmarks.dat`, `mmod_human_face_detector.dat` and
`dlib_face_recognition_resnet_model_v1.dat` are required. You may download them
from [go-face-testdata](https://github.com/Kagami/go-face-testdata) repo:```bash
wget https://github.com/Kagami/go-face-testdata/raw/master/models/shape_predictor_5_face_landmarks.dat
wget https://github.com/Kagami/go-face-testdata/raw/master/models/dlib_face_recognition_resnet_model_v1.dat
wget https://github.com/Kagami/go-face-testdata/raw/master/models/mmod_human_face_detector.dat
```## Usage
To use go-face in your Go code:
```go
import "github.com/Kagami/go-face"
```To install go-face in your $GOPATH:
```bash
go get github.com/Kagami/go-face
```For further details see [GoDoc documentation](https://godoc.org/github.com/Kagami/go-face).
## Example
```go
package mainimport (
"fmt"
"log"
"path/filepath""github.com/Kagami/go-face"
)// Path to directory with models and test images. Here it's assumed it
// points to the clone.
const dataDir = "testdata"var (
modelsDir = filepath.Join(dataDir, "models")
imagesDir = filepath.Join(dataDir, "images")
)// This example shows the basic usage of the package: create an
// recognizer, recognize faces, classify them using few known ones.
func main() {
// Init the recognizer.
rec, err := face.NewRecognizer(modelsDir)
if err != nil {
log.Fatalf("Can't init face recognizer: %v", err)
}
// Free the resources when you're finished.
defer rec.Close()// Test image with 10 faces.
testImagePristin := filepath.Join(imagesDir, "pristin.jpg")
// Recognize faces on that image.
faces, err := rec.RecognizeFile(testImagePristin)
if err != nil {
log.Fatalf("Can't recognize: %v", err)
}
if len(faces) != 10 {
log.Fatalf("Wrong number of faces")
}// Fill known samples. In the real world you would use a lot of images
// for each person to get better classification results but in our
// example we just get them from one big image.
var samples []face.Descriptor
var cats []int32
for i, f := range faces {
samples = append(samples, f.Descriptor)
// Each face is unique on that image so goes to its own category.
cats = append(cats, int32(i))
}
// Name the categories, i.e. people on the image.
labels := []string{
"Sungyeon", "Yehana", "Roa", "Eunwoo", "Xiyeon",
"Kyulkyung", "Nayoung", "Rena", "Kyla", "Yuha",
}
// Pass samples to the recognizer.
rec.SetSamples(samples, cats)// Now let's try to classify some not yet known image.
testImageNayoung := filepath.Join(imagesDir, "nayoung.jpg")
nayoungFace, err := rec.RecognizeSingleFile(testImageNayoung)
if err != nil {
log.Fatalf("Can't recognize: %v", err)
}
if nayoungFace == nil {
log.Fatalf("Not a single face on the image")
}
catID := rec.Classify(nayoungFace.Descriptor)
if catID < 0 {
log.Fatalf("Can't classify")
}
// Finally print the classified label. It should be "Nayoung".
fmt.Println(labels[catID])
}
```Run with:
```bash
mkdir -p ~/go && cd ~/go # Or cd to your $GOPATH
mkdir -p src/go-face-example && cd src/go-face-example
git clone https://github.com/Kagami/go-face-testdata testdata
edit main.go # Paste example code
go get && go run main.go
```## Test
To fetch test data and run tests:
```bash
make test
```## FAQ
### How to improve recognition accuracy
There are few suggestions:
* Try CNN recognizing
* Try different tolerance values of `ClassifyThreshold`
* Try different size/padding/jittering values of `NewRecognizerWithConfig`
* Provide more samples of each category to `SetSamples` if possible
* Implement better classify heuristics (see [classify.cc](classify.cc))
* [Train](https://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html) network (`dlib_face_recognition_resnet_model_v1.dat`) on your own test data## License
go-face is licensed under [CC0](COPYING).