Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/KevinMusgrave/pytorch-adapt

Domain adaptation made easy. Fully featured, modular, and customizable.
https://github.com/KevinMusgrave/pytorch-adapt

computer-vision deep-learning domain-adaptation machine-learning pytorch transfer-learning

Last synced: 8 days ago
JSON representation

Domain adaptation made easy. Fully featured, modular, and customizable.

Awesome Lists containing this project

README

        



PyTorch Adapt



PyPi version

## Why use PyTorch Adapt?
PyTorch Adapt provides tools for **domain adaptation**, a type of machine learning algorithm that repurposes existing models to work in new domains. This library is:

### 1. **Fully featured**
Build a complete train/val domain adaptation pipeline in a few lines of code.
### 2. **Modular**
Use just the parts that suit your needs, whether it's the algorithms, loss functions, or validation methods.
### 3. **Highly customizable**
Customize and combine complex algorithms with ease.
### 4. **Compatible with frameworks**
Add additional functionality to your code by using one of the framework wrappers. Converting an algorithm into a PyTorch Lightning module is as simple as wrapping it with ```Lightning```.

## Documentation
- [**Documentation**](https://kevinmusgrave.github.io/pytorch-adapt/)
- [**Installation instructions**](https://github.com/KevinMusgrave/pytorch-adapt#installation)
- [**List of papers implemented**](https://kevinmusgrave.github.io/pytorch-adapt/algorithms/uda)

## Examples
See the **[examples folder](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/README.md)** for notebooks you can download or run on Google Colab.

## How to...

### Use in vanilla PyTorch
```python
from pytorch_adapt.hooks import DANNHook
from pytorch_adapt.utils.common_functions import batch_to_device

# Assuming that models, optimizers, and dataloader are already created.
hook = DANNHook(optimizers)
for data in tqdm(dataloader):
data = batch_to_device(data, device)
# Optimization is done inside the hook.
# The returned loss is for logging.
_, loss = hook({**models, **data})
```

### Build complex algorithms
Let's customize ```DANNHook``` with:

- minimum class confusion
- virtual adversarial training

```python
from pytorch_adapt.hooks import MCCHook, VATHook

# G and C are the Generator and Classifier models
G, C = models["G"], models["C"]
misc = {"combined_model": torch.nn.Sequential(G, C)}
hook = DANNHook(optimizers, post_g=[MCCHook(), VATHook()])
for data in tqdm(dataloader):
data = batch_to_device(data, device)
_, loss = hook({**models, **data, **misc})
```

### Wrap with your favorite PyTorch framework
First, set up the adapter and dataloaders:

```python
from pytorch_adapt.adapters import DANN
from pytorch_adapt.containers import Models
from pytorch_adapt.datasets import DataloaderCreator

models_cont = Models(models)
adapter = DANN(models=models_cont)
dc = DataloaderCreator(num_workers=2)
dataloaders = dc(**datasets)
```

Then use a framework wrapper:

#### PyTorch Lightning
```python
import pytorch_lightning as pl
from pytorch_adapt.frameworks.lightning import Lightning

L_adapter = Lightning(adapter)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, dataloaders["train"])
```

#### PyTorch Ignite
```python
trainer = Ignite(adapter)
trainer.run(datasets, dataloader_creator=dc)
```

### Check your model's performance
You can do this in vanilla PyTorch:
```python
from pytorch_adapt.validators import SNDValidator

# Assuming predictions have been collected
target_train = {"preds": preds}
validator = SNDValidator()
score = validator(target_train=target_train)
```

You can also do this during training with a framework wrapper:

#### PyTorch Lightning
```python
from pytorch_adapt.frameworks.utils import filter_datasets

validator = SNDValidator()
dataloaders = dc(**filter_datasets(datasets, validator))
train_loader = dataloaders.pop("train")

L_adapter = Lightning(adapter, validator=validator)
trainer = pl.Trainer(gpus=1, max_epochs=1)
trainer.fit(L_adapter, train_loader, list(dataloaders.values()))
```

#### Pytorch Ignite
```python
from pytorch_adapt.validators import ScoreHistory

validator = ScoreHistory(SNDValidator())
trainer = Ignite(adapter, validator=validator)
trainer.run(datasets, dataloader_creator=dc)
```

### Run the above examples
See [this notebook](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/examples/other/ReadmeExamples.ipynb) and [the examples page](https://github.com/KevinMusgrave/pytorch-adapt/tree/main/examples/) for other notebooks.

## Installation

### Pip
```
pip install pytorch-adapt
```

**To get the latest dev version**:
```
pip install pytorch-adapt --pre
```

**To use ```pytorch_adapt.frameworks.lightning```**:
```
pip install pytorch-adapt[lightning]
```

**To use ```pytorch_adapt.frameworks.ignite```**:
```
pip install pytorch-adapt[ignite]
```

### Conda
Coming soon...

### Dependencies
See [setup.py](https://github.com/KevinMusgrave/pytorch-adapt/blob/main/setup.py)

## Acknowledgements

### Contributors
Thanks to the contributors who made pull requests!
| Contributor | Highlights |
| -- | -- |
| [deepseek-eoghan](https://github.com/deepseek-eoghan) | Improved the TargetDataset class |

### Advisors
Thank you to [Ser-Nam Lim](https://research.fb.com/people/lim-ser-nam/), and my research advisor, [Professor Serge Belongie](https://vision.cornell.edu/se3/people/serge-belongie/).

### Logo
Thanks to [Jeff Musgrave](https://www.designgenius.ca/) for designing the logo.

### Citing this library
If you'd like to cite pytorch-adapt in your paper, you can refer to [this paper](https://arxiv.org/abs/2211.15673) by copy-pasting this bibtex reference:
```latex
@article{Musgrave2022PyTorchA,
title={PyTorch Adapt},
author={Kevin Musgrave and Serge J. Belongie and Ser Nam Lim},
journal={ArXiv},
year={2022},
volume={abs/2211.15673}
}
```

### Code references (in no particular order)
- https://github.com/wgchang/DSBN
- https://github.com/jihanyang/AFN
- https://github.com/thuml/Versatile-Domain-Adaptation
- https://github.com/tim-learn/ATDOC
- https://github.com/thuml/CDAN
- https://github.com/takerum/vat_chainer
- https://github.com/takerum/vat_tf
- https://github.com/RuiShu/dirt-t
- https://github.com/lyakaap/VAT-pytorch
- https://github.com/9310gaurav/virtual-adversarial-training
- https://github.com/thuml/Deep-Embedded-Validation
- https://github.com/lr94/abas
- https://github.com/thuml/Batch-Spectral-Penalization
- https://github.com/jvanvugt/pytorch-domain-adaptation
- https://github.com/ptrblck/pytorch_misc