Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Kotlin/multik
Multidimensional array library for Kotlin
https://github.com/Kotlin/multik
kotlin matrix multiplatform ndarray
Last synced: 6 days ago
JSON representation
Multidimensional array library for Kotlin
- Host: GitHub
- URL: https://github.com/Kotlin/multik
- Owner: Kotlin
- License: apache-2.0
- Created: 2020-05-21T07:37:29.000Z (over 4 years ago)
- Default Branch: develop
- Last Pushed: 2024-08-21T14:28:58.000Z (3 months ago)
- Last Synced: 2024-08-21T16:19:00.498Z (3 months ago)
- Topics: kotlin, matrix, multiplatform, ndarray
- Language: Kotlin
- Homepage: https://kotlin.github.io/multik/
- Size: 2.87 MB
- Stars: 636
- Watchers: 16
- Forks: 39
- Open Issues: 58
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-kotlin - multik - Multidimensional array library for Kotlin (Libraries)
README
[![Kotlin Alpha](https://kotl.in/badges/alpha.svg)](https://kotlinlang.org/docs/components-stability.html)
[![JetBrains incubator project](https://jb.gg/badges/incubator.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![Maven Central](https://img.shields.io/maven-central/v/org.jetbrains.kotlinx/multik-core)](https://mvnrepository.com/artifact/org.jetbrains.kotlinx/multik-core)
[![GitHub license](https://img.shields.io/badge/license-Apache%20License%202.0-blue.svg?style=flat)](https://www.apache.org/licenses/LICENSE-2.0)# Multik
Multidimensional array library for Kotlin.
## Modules
* `multik-core` — contains ndarrays, methods called on them and [math], [stat] and [linalg] interfaces.
* `multik-default` — implementation including `multik-kotlin` and `multik-openblas` for performance.
* `multik-kotlin` — implementation of [math], [stat] and [linalg] interfaces on JVM.
* `multik-openblas` — implementation of [math], [stat] and [linalg] interfaces in native code using OpenBLAS.## Using in your projects
### Gradle
In your Gradle build script:
1. Add the Maven Central Repository.
2. Add the `org.jetbrains.kotlinx:multik-core:$multik_version` api dependency.
3. Add an implementation dependency: `org.jetbrains.kotlinx:multik-default:$multik_version`,
`org.jetbrains.kotlinx:multik-kotlin:$multik_version` or `org.jetbrains.kotlinx:multik-openblas:$multik_version`.`build.gradle`:
```groovy
repositories {
mavenCentral()
}dependencies {
implementation "org.jetbrains.kotlinx:multik-core:0.2.3"
implementation "org.jetbrains.kotlinx:multik-default:0.2.3"
}
````build.gradle.kts`:
```kotlin
repositories {
mavenCentral()
}dependencies {
implementation("org.jetbrains.kotlinx:multik-core:0.2.3")
implementation("org.jetbrains.kotlinx:multik-default:0.2.3")
}
```For a multiplatform project, set the dependency in a common block:
```kotlin
kotlin {
sourceSets {
val commonMain by getting {
dependencies {
implementation("org.jetbrains.kotlinx:multik-core:0.2.3")
}
}
}
}
```or in a platform-specific block:
```kotlin
kotlin {
sourceSets {
val jvmName by getting {
dependencies {
implementation("org.jetbrains.kotlinx:multik-core-jvm:0.2.3")
}
}
}
}
```### Jupyter Notebook
Install [Kotlin kernel](https://github.com/Kotlin/kotlin-jupyter) for
[Jupyter](https://jupyter.org/)
or just visit to [Datalore](https://datalore.jetbrains.com/).Import stable `multik` version into notebook:
```
%use multik
```## Support platforms
| Platforms | `multik-core` | `multik-kotlin` | `multik-openblas` | `multik-default` |
|:---------------------:|:------------------:|:------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------:|
| **JS** | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: |
| **linuxX64** | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| **mingwX64** | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| **macosX64** | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| **macosArm64** | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| **iosArm64** | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: |
| **iosX64** | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: |
| **iosSimulatorArm64** | :white_check_mark: | :white_check_mark: | :x: | :white_check_mark: |
| **JVM** | :white_check_mark: | :white_check_mark: | linuxX64 - :white_check_mark:
mingwX64 - :white_check_mark:
macosX64 - :white_check_mark:
macosArm64 - :white_check_mark:
androidArm64 - :white_check_mark: | androidArm32 - :x:
androidX86 - :x:
androidX64 - :x: |For Kotlin/JS, we use the new [IR](https://kotlinlang.org/docs/js-ir-compiler.html).
We also use the [new memory model](https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/)
in Kotlin/Native. Keep this in mind when using Multik in your multiplatform projects.**Note**:
* on ubuntu 18.04 and older `multik-openblas` doesn't work due to older versions of _**glibc**_.
* `multik-openblas` for desktop targets (_linuxX64_, _mingwX64_, _macosX64_, _macosArm64_) is experimental and unstable.
We will improve stability and perfomance as _Kotlin/Native_ evolves.
* JVM target `multik-openblas` for Android only supports **arm64-v8a** processors.## Quickstart
Visit [Multik documentation](https://kotlin.github.io/multik) for a detailed feature overview.
#### Creating arrays
```kotlin
val a = mk.ndarray(mk[1, 2, 3])
/* [1, 2, 3] */val b = mk.ndarray(mk[mk[1.5, 2.1, 3.0], mk[4.0, 5.0, 6.0]])
/*
[[1.5, 2.1, 3.0],
[4.0, 5.0, 6.0]]
*/val c = mk.ndarray(mk[mk[mk[1.5f, 2f, 3f], mk[4f, 5f, 6f]], mk[mk[3f, 2f, 1f], mk[4f, 5f, 6f]]])
/*
[[[1.5, 2.0, 3.0],
[4.0, 5.0, 6.0]],[[3.0, 2.0, 1.0],
[4.0, 5.0, 6.0]]]
*/mk.zeros(3, 4) // create an array of zeros
/*
[[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0]]
*/
mk.ndarray(setOf(30f, 2f, 13f, 12f), intArrayOf(2, 2)) // create an array from a collection
/*
[[30.0, 2.0],
[13.0, 12.0]]
*/
val d = mk.ndarray(doubleArrayOf(1.0, 1.3, 3.0, 4.0, 9.5, 5.0), 2, 3) // create an array of shape(2, 3) from a primitive array
/*
[[1.0, 1.3, 3.0],
[4.0, 9.5, 5.0]]
*/
mk.d3array(2, 2, 3) { it * it } // create an array of 3 dimension
/*
[[[0, 1, 4],
[9, 16, 25]],[[36, 49, 64],
[81, 100, 121]]]
*/mk.d2arrayIndices(3, 3) { i, j -> ComplexFloat(i, j) }
/*
[[0.0+(0.0)i, 0.0+(1.0)i, 0.0+(2.0)i],
[1.0+(0.0)i, 1.0+(1.0)i, 1.0+(2.0)i],
[2.0+(0.0)i, 2.0+(1.0)i, 2.0+(2.0)i]]
*/mk.arange(10, 25, 5) // creare an array with elements in the interval [10, 25) with step 5
/* [10, 15, 20] */mk.linspace(0, 2, 9) // create an array of 9 elements in the interval [0, 2]
/* [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] */val e = mk.identity(3) // create an identity array of shape (3, 3)
/*
[[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]]
*/
```#### Array properties
```kotlin
a.shape // Array dimensions
a.size // Size of array
a.dim // object Dimension
a.dim.d // number of array dimensions
a.dtype // Data type of array elements
```#### Arithmetic operations
```kotlin
val f = b - d // subtraction
/*
[[0.5, 0.8, 0.0],
[0.0, -4.5, 1.0]]
*/d + f // addition
/*
[[1.5, 2.1, 3.0],
[4.0, 5.0, 6.0]]
*/b / d // division
/*
[[1.5, 1.6153846153846154, 1.0],
[1.0, 0.5263157894736842, 1.2]]
*/f * d // multiplication
/*
[[0.5, 1.04, 0.0],
[0.0, -42.75, 5.0]]
*/
```#### Array mathematics
See documentation for other methods of
[mathematics](https://kotlin.github.io/multik/multik-core/org.jetbrains.kotlinx.multik.api.math/index.html),
[linear algebra](https://kotlin.github.io/multik/multik-core/org.jetbrains.kotlinx.multik.api.linalg/index.html),
[statistics](https://kotlin.github.io/multik/multik-core/org.jetbrains.kotlinx.multik.api.stat/index.html).```kotlin
a.sin() // element-wise sin, equivalent to mk.math.sin(a)
a.cos() // element-wise cos, equivalent to mk.math.cos(a)
b.log() // element-wise natural logarithm, equivalent to mk.math.log(b)
b.exp() // element-wise exp, equivalent to mk.math.exp(b)
d dot e // dot product, equivalent to mk.linalg.dot(d, e)
```#### Aggregate functions
```kotlin
mk.math.sum(c) // array-wise sum
mk.math.min(c) // array-wise minimum elements
mk.math.maxD3(c, axis=0) // maximum value of an array along axis 0
mk.math.cumSum(b, axis=1) // cumulative sum of the elements
mk.stat.mean(a) // mean
mk.stat.median(b) // meadian
```#### Copying arrays
```kotlin
val f = a.copy() // create a copy of the array and its data
val h = b.deepCopy() // create a copy of the array and copy the meaningful data
```#### Operations of Iterable
```kotlin
c.filter { it < 3 } // select all elements less than 3
b.map { (it * it).toInt() } // return squares
c.groupNDArrayBy { it % 2 } // group elements by condition
c.sorted() // sort elements
```#### Indexing/Slicing/Iterating
```kotlin
a[2] // select the element at the 2 index
b[1, 2] // select the element at row 1 column 2
b[1] // select row 1
b[0..1, 1] // select elements at rows 0 to 1 in column 1
b[0, 0..2..1] // select elements at row 0 in columns 0 to 2 with step 1for (el in b) {
print("$el, ") // 1.5, 2.1, 3.0, 4.0, 5.0, 6.0,
}// for n-dimensional
val q = b.asDNArray()
for (index in q.multiIndices) {
print("${q[index]}, ") // 1.5, 2.1, 3.0, 4.0, 5.0, 6.0,
}
```#### Inplace
```kotlin
val a = mk.linspace(0, 1, 10)
/*
a = [0.0, 0.1111111111111111, 0.2222222222222222, 0.3333333333333333, 0.4444444444444444, 0.5555555555555556,
0.6666666666666666, 0.7777777777777777, 0.8888888888888888, 1.0]
*/
val b = mk.linspace(8, 9, 10)
/*
b = [8.0, 8.11111111111111, 8.222222222222221, 8.333333333333334, 8.444444444444445, 8.555555555555555,
8.666666666666666, 8.777777777777779, 8.88888888888889, 9.0]
*/a.inplace {
math {
(this - b) * b
abs()
}
}
// a = [64.0, 64.88888, 65.77778, 66.66666, 67.55556, 68.44444, 69.333336, 70.22222, 71.111115, 72.0]
```## Building
To build the entire project, you need to set up an environment for building `multik-openblas`:
* JDK 1.8 or higher
* _JAVA_HOME_ environment - to search for jni files
* Compilers _gcc_, _g++_, _gfortran_ version 8 or higher.
It is important that they are of the same version.Run `./gradlew assemble` to build all modules.
If you don't need to build `multik-openblas`,
just disable the `cmake_build` task and build the module you need.## Contributing
There is an opportunity to contribute to the project:
1. Implement [math](multik-core/src/main/kotlin/org/jetbrains/kotlinx/multik/api/math/Math.kt),
[linalg](multik-core/src/main/kotlin/org/jetbrains/kotlinx/multik/api/linalg/LinAlg.kt),
[stat](multik-core/src/main/kotlin/org/jetbrains/kotlinx/multik/api/Statistics.kt) interfaces.
2. Create your own engine successor from [Engine](multik-core/src/main/kotlin/org/jetbrains/kotlinx/multik/api/Engine.kt), for example - [JvmEngine](multik-kotlin/src/main/kotlin/org/jetbrains/kotlinx/multik/jvm/JvmEngine.kt).
3. Use [mk.addEngine](https://github.com/devcrocod/multik/blob/972b18cfd2952abd811fabf34461d238e55c5587/multik-core/src/main/kotlin/org/jetbrains/multik/api/Multik.kt#L23) and [mk.setEngine](https://github.com/devcrocod/multik/blob/972b18cfd2952abd811fabf34461d238e55c5587/multik-core/src/main/kotlin/org/jetbrains/multik/api/Multik.kt#L27)
to use your implementation.