Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Kshitizbansal/pointillism-multi-radar-data

Multiple Radar Dataset release for Pointillism paper.
https://github.com/Kshitizbansal/pointillism-multi-radar-data

Last synced: 6 days ago
JSON representation

Multiple Radar Dataset release for Pointillism paper.

Awesome Lists containing this project

README

        

# Pointillism: A Multi-modal dataset for automotive radar sensing.
Official multi-radar Dataset release for [Pointillism: Accurate 3D Bounding Box Estimation with Multi-Radars](https://wcsng.ucsd.edu/pointillism/). Official code for the paper is available at [RP-net](https://github.com/Kshitizbansal/pointillism_rp_net).

## Sensor setup
![pointillism sensor setup](pointillism_setup.png)
* 1 x 16-channel OS1 Ouster LiDAR
* 1 x RealSense D415 Camera (for RGB only)
* 2 x IWR1443BOOST 3T4R Radars

## Dataset
About `300` frames are provided from each sensor for `48` different scenes. Each frame is time synchronized among all the sensors using system timestamps.

## Data Visualizer SDK
### Requirements for Visualizer
1) Download the dataset from https://drive.google.com/file/d/1C-Ryh5W5FLPenNgPUDNcNwiac-NnwU1A/view?usp=sharing in data folder.
2) Dataset in **pointillism-multi-radar-data** should follow this directory structure.
```
pointillism-multi-radar-data
└───data
└───scene{#} 'Where {} is omitted and # is the folder number'
└───lidar
└───*.pcd
└───radar_0
└───*.csv
└───radar_1
└───*.csv
└───images
└───*.jpg
└───label
└───*.json
```
3) Download **ffmpeg** https://ffmpeg.org/download.html and add ffmpeg.exe to path environment variable (only required to create video).
4) Download **open3d**, http://www.open3d.org/download/, for 3D visualization.

### To run Visualizer:
```
To see all options type
python visualization.py -h

usage: visualization.py [-h]
--type [{Lidar3D,LidarBird,Camera,Radar3D,RadarBird}]
[--radar [RADAR [RADAR ...]]]
[--video]
--frame [FRAME [FRAME ...]]
--dataset [DATASET [DATASET ...]]

Enter which file and type of image to be converted

optional arguments:
-h, --help show this help message and exit
--type [{Lidar3D,LidarBird,Camera,Radar3D,RadarBird}]
--type LidarBird/Lidar3D/Camera/Radar3D/RadarBird
--radar [RADAR [RADAR ...]]
--radar 1/0
--video Will create video of flag raised
--frame [FRAME [FRAME ...]]
--frame int int
--dataset [DATASET [DATASET ...]]
--dataset int
```
### Example
```
python visualization.py --type LidarBird --frame 15 90 --dataset 16 --video
```

## Citation

```
@inproceedings{bansal2020pointillism,
title={Pointillism: accurate 3D bounding box estimation with multi-radars},
author={Bansal, Kshitiz and Rungta, Keshav and Zhu, Siyuan and Bharadia, Dinesh},
booktitle={Proceedings of the 18th Conference on Embedded Networked Sensor Systems},
pages={340--353},
year={2020}
}
```