Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/LibCrowds/notebooks
Computational analysis of LibCrowds data
https://github.com/LibCrowds/notebooks
Last synced: 2 months ago
JSON representation
Computational analysis of LibCrowds data
- Host: GitHub
- URL: https://github.com/LibCrowds/notebooks
- Owner: LibCrowds
- License: mit
- Created: 2018-05-24T21:17:24.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2018-07-16T23:48:09.000Z (over 6 years ago)
- Last Synced: 2024-08-03T05:01:40.739Z (6 months ago)
- Language: Jupyter Notebook
- Homepage: https://mybinder.org/v2/gh/libcrowds/notebooks/master?urlpath=lab
- Size: 23 MB
- Stars: 2
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# LibCrowds Notebooks
> Computational analysis of LibCrowds data.
The Jupyter notebooks contained in this repository explore the data created
via the LibCrowds platform. To work with interactive versions of the notebooks,
visit the following URL:https://mybinder.org/v2/gh/libcrowds/notebooks/master?urlpath=lab
The notebooks are located in the `/notebooks` folder.
## Contents
1. [An Introduction to the LibCrowds Annotations Data Model](https://nbviewer.jupyter.org/github/LibCrowds/notebooks/blob/master/notebooks/intro_to_the_libcrowds_data_model.ipynb)
2. [An Introduction to Analysing In the Spotlight Data Using Python](https://nbviewer.jupyter.org/github/LibCrowds/notebooks/blob/master/notebooks/intro_to_analysing_its_data_using_python.ipynb)
3. [An Introduction to Visualising In the Spotlight Data Using Python](https://nbviewer.jupyter.org/github/LibCrowds/notebooks/blob/master/notebooks/intro_to_visualising_its_data_using_python.ipynb)
4. [Visualising In the Spotlight Data Over Time](https://nbviewer.jupyter.org/github/LibCrowds/notebooks/blob/master/notebooks/visualising_its_data_over_time.ipynb)
## Build setup
``` bash
# clone with submodules
git clone https://github.com/LibCrowds/notebooks --recursive# change directory
cd notebooks# install dependencies
pip install -r requirements.txt# raise memory limit (on Windows replace "export" with "set")
export NODE_OPTIONS=--max-old-space-size=4096# install Jupyter extensions
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install @jupyterlab/plotly-extension
jupyter labextension install plotlywidget# run
jupyter lab
```