Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Lightning-AI/lightning-colossalai
Large Scale Distributed Model Training strategy with Colossal AI and Lightning AI
https://github.com/Lightning-AI/lightning-colossalai
lightning python pytorch
Last synced: 2 months ago
JSON representation
Large Scale Distributed Model Training strategy with Colossal AI and Lightning AI
- Host: GitHub
- URL: https://github.com/Lightning-AI/lightning-colossalai
- Owner: Lightning-Universe
- License: apache-2.0
- Archived: true
- Created: 2023-02-14T22:42:00.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-09-01T17:22:21.000Z (over 1 year ago)
- Last Synced: 2024-05-17T03:12:13.214Z (7 months ago)
- Topics: lightning, python, pytorch
- Language: Python
- Homepage:
- Size: 1.09 MB
- Stars: 58
- Watchers: 13
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
- awesome-llm-and-aigc - Lightning-AI/lightning-colossalai - AI/lightning-colossalai?style=social"/> : Efficient Large-Scale Distributed Training with [Colossal-AI](https://colossalai.org/) and [Lightning AI](https://lightning.ai/). (Summary)
- awesome-llm-and-aigc - Lightning-AI/lightning-colossalai - AI/lightning-colossalai?style=social"/> : Efficient Large-Scale Distributed Training with [Colossal-AI](https://colossalai.org/) and [Lightning AI](https://lightning.ai/). (Summary)
README
# Lightning ⚡ Colossal-AI
**Efficient Large-Scale Distributed Training with [Colossal-AI](https://colossalai.org/) and [Lightning AI](https://lightning.ai)**
[![lightning](https://img.shields.io/badge/-Lightning_2.0+-792ee5?logo=pytorchlightning&logoColor=white)](https://lightning.ai/)
[![PyPI Status](https://badge.fury.io/py/lightning-colossalai.svg)](https://badge.fury.io/py/lightning-colossalai)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/lightning-colossalai)](https://pypi.org/project/lightning-colossalai/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/lightning-ColossalAI)](https://pepy.tech/project/lightning-colossalai)
[![Deploy Docs](https://github.com/Lightning-AI/lightning-ColossalAI/actions/workflows/docs-deploy.yml/badge.svg)](https://lightning-ai.github.io/lightning-ColossalAI/)[![General checks](https://github.com/Lightning-Universe/lightning-ColossalAI/actions/workflows/ci-checks.yml/badge.svg?event=push)](https://github.com/Lightning-Universe/lightning-ColossalAI/actions/workflows/ci-checks.yml)
[![CI testing](https://github.com/Lightning-Universe/lightning-ColossalAI/actions/workflows/ci-testing.yml/badge.svg?event=push)](https://github.com/Lightning-Universe/lightning-ColossalAI/actions/workflows/ci-testing.yml)
[![Build Status](https://dev.azure.com/Lightning-AI/compatibility/_apis/build/status%2Fstrategies%2FLightning-Universe.lightning-ColossalAI?branchName=main)](https://dev.azure.com/Lightning-AI/compatibility/_build/latest?definitionId=66&branchName=main)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Lightning-Universe/lightning-ColossalAI/main.svg)](https://results.pre-commit.ci/latest/github/Lightning-Universe/lightning-ColossalAI/main)______________________________________________________________________
## Installation
```bash
pip install -U lightning-colossalai
```## Usage
Simply set the strategy argument in the Trainer:
```py
import lightning as Ltrainer = L.Trainer(strategy="colossalai", precision="16-mixed", devices=...)
```For more fine-grained tuning of Colossal-AI's parameters, pass the strategy object to the Trainer:
```py
import lightning as L
from lightning_colossalai import ColossalAIStrategystrategy = ColossalAIStrategy(...)
trainer = L.Trainer(strategy=strategy, precision="16-mixed", devices=...)
```Find all configuration options [in the docs](https://lightning.ai/docs/pytorch/latest/advanced/third_party/colossalai.html)!