Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Lightning-Universe/lightning-bolts
Toolbox of models, callbacks, and datasets for AI/ML researchers.
https://github.com/Lightning-Universe/lightning-bolts
ai gan image-processing machine-learning natural-language-processing pytorch supervised-learning
Last synced: 3 months ago
JSON representation
Toolbox of models, callbacks, and datasets for AI/ML researchers.
- Host: GitHub
- URL: https://github.com/Lightning-Universe/lightning-bolts
- Owner: Lightning-Universe
- License: apache-2.0
- Created: 2020-03-25T16:03:30.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-10-07T22:18:36.000Z (4 months ago)
- Last Synced: 2024-10-29T15:43:36.511Z (3 months ago)
- Topics: ai, gan, image-processing, machine-learning, natural-language-processing, pytorch, supervised-learning
- Language: Python
- Homepage: https://lightning-bolts.readthedocs.io
- Size: 5.61 MB
- Stars: 1,688
- Watchers: 23
- Forks: 323
- Open Issues: 64
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
README
**Deep Learning components for extending PyTorch Lightning**
______________________________________________________________________
Installation •
Latest Docs •
Stable Docs •
About •
Community •
Website •
License[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/lightning-bolts)](https://pepy.tech/project/lightning-bolts)
[![Build Status](https://dev.azure.com/Lightning-AI/compatibility/_apis/build/status%2Fprojects%2FLightning-Universe.Bolts?branchName=master)](https://dev.azure.com/Lightning-AI/compatibility/_build/latest?definitionId=51&branchName=master)
[![codecov](https://codecov.io/gh/Lightning-Universe/lightning-bolts/branch/master/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-Universe/lightning-bolts)[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
[![DOI](https://zenodo.org/badge/250025410.svg)](https://zenodo.org/badge/latestdoi/250025410)______________________________________________________________________
## Getting Started
Pip / Conda
```bash
pip install lightning-bolts
```Other installations
Install bleeding-edge (no guarantees)
```bash
pip install https://github.com/Lightning-Universe/lightning-bolts/archive/refs/heads/master.zip
```To install all optional dependencies
```bash
pip install lightning-bolts["extra"]
```## What is Bolts?
Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production.
#### Example 1: Accelerate Lightning Training with the Torch ORT Callback
Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.
```python
from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import ORTCallbackclass VisionModel(LightningModule):
def __init__(self):
super().__init__()
self.model = models.vgg19_bn(pretrained=True)...
model = VisionModel()
trainer = Trainer(gpus=1, callbacks=ORTCallback())
trainer.fit(model)
```#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference
We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.
```python
from pytorch_lightning import LightningModule, Trainer
import torchvision.models as models
from pl_bolts.callbacks import SparseMLCallbackclass VisionModel(LightningModule):
def __init__(self):
super().__init__()
self.model = models.vgg19_bn(pretrained=True)...
model = VisionModel()
trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
trainer.fit(model)
```## Are specific research implementations supported?
We'd like to encourage users to contribute general components that will help a broad range of problems; however, components that help specific domains will also be welcomed!
For example, a callback to help train SSL models would be a great contribution; however, the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).
Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL-based tasks.
## Contribute!
Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!
Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!
______________________________________________________________________
## License
Please observe the Apache 2.0 license that is listed in this repository.
In addition, the Lightning framework is Patent Pending.