https://github.com/Link-/uber_data
Uber web interface crawler / scraper - Convert the trips table into a CSV file
https://github.com/Link-/uber_data
analysis data jupyter uber-crawler uber-data
Last synced: 8 months ago
JSON representation
Uber web interface crawler / scraper - Convert the trips table into a CSV file
- Host: GitHub
- URL: https://github.com/Link-/uber_data
- Owner: Link-
- License: gpl-3.0
- Archived: true
- Created: 2016-06-02T18:49:42.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2018-10-28T19:43:35.000Z (about 7 years ago)
- Last Synced: 2024-08-03T20:12:34.729Z (over 1 year ago)
- Topics: analysis, data, jupyter, uber-crawler, uber-data
- Language: HTML
- Homepage:
- Size: 485 KB
- Stars: 40
- Watchers: 5
- Forks: 11
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DISCONTINUED -- PROJECT NOT MAINTAINED
## Uber Crawler / Usage Analytics
@version alpha-0.2.2
| Branch | Build Status | Coverage |
| ------ | ------------ | -------- |
| master | [](https://travis-ci.org/mena-devs/slack_data_collector) | [](https://coveralls.io/github/Link-/uber_data?branch=master) |
| alpha-0.2.3 | [](https://travis-ci.org/Link-/uber_data) | [](https://coveralls.io/github/Link-/uber_data?branch=alpha-0.2.3) |
### Synopsis
Uber web interface crawler - Convert the trips table into a CSV file
### Installation & Configuration
#### Minimum Requirements
```
- PHP (5.6+)
- XDebug is a requirement for running the unit tests
```
Installation is very basic, just:
1. Clone this repository into any directory:
```sh
git clone https://github.com/Link-/uber_data.git
```
2. Install dependencies and build the `autoload` file:
```sh
composer install
```
3. Build your `App.php` configuration file:
#### Using CLI
This repository ships with a handy command-line interface companion named `uberc` - located at `./bin/uberc`
1. Add `./bin` to your path with
```sh
export PATH="$PATH:/bin"
```
2. Configure (this has to be done only once)
```sh
uberc config
```
3. Analyze: Will generate the analytics files in the desired directories specified at the config step
```sh
uberc analyze
```
### Sample Output
```text
2016-06-03,Logan,$7.73,uberX,Los Angeles,N.A
2016-06-03,John,$14.45,uberX,Los Angeles,N.A
2016-06-02,Mark,$4.70,uberX,Los Angeles,N.A
2016-06-02,Logan,Canceled,uberX,Los Angeles,N.A
2016-06-02,Morgan,$13.23,uberX,Los Angeles,N.A
2016-06-01,Sleimann,$4.79,uberX,Los Angeles,N.A
2016-06-01,George,$14.36,uberX,Los Angeles,N.A
```
## Jupyter Notebook
### Installation & Configuration
#### Minimum Requirements
```
python3 (3.4.3)
pip3 (1.5.4)
jupyter (4.1.0)
pandas (0.18.1)
matplotlib (1.5.1)
```
Review the installation requirements / steps per depedency by following the reference links provided below.
1. Install `python3`, you will need a C compiler and the Python headers and finally `pip3`:
```sh
sudo apt-get install python3 build-essential python3-dev python3-setuptools python3-pip
```
2. Verify that python3 and pip3 have been downloaded / installed:
```sh
pip3 -V
pip 1.5.4 from /usr/lib/python3/dist-packages (python 3.4)
python3 -V
Python 3.4.3
```
3. Install `Jupyter`
```sh
sudo pip3 install jupyter
```
4. Install `pandas` -- usually `numpy` gets bundled with `pandas` but just in case, install it separately (link to the installation guide below)
```sh
sudo pip3 install pandas
```
5. Install `matplotlib`
```sh
sudo apt-get install python3-matplotlib
# Upgrade to v.1.5.1
```
#### Installation Guides
- pip : [installation guide](https://pip.pypa.io/en/stable/installing/)
- jupyter : [installation guide](http://jupyter.readthedocs.io/en/latest/install.html)
- pandas : [installation guide](http://pandas.pydata.org/pandas-docs/stable/install.html)
- scipy (numpy) : [installation guide](http://scipy.org/install.html)
- matplotlib : [installation guide](http://matplotlib.org/users/installing.html)
### Execution
1. Run jupyter notebook:
```sh
jupyter notebook
```
2. Open the `Uber-Data_Analysis-0.1.ipynb` found in `uber_data/analysis/`
3. In the 3rd row, change the value of `file_location` as per the below:
```python
# FROM
file_location = r'/_sample_data/sample_data.csv'
# TO
file_location = r'/data/.csv'
```
4. Press `Cell` then `Run All` from the menubar
5. Voila, you should game the output as shown in the Sample Analysis Output
### Sample Analysis Output
Uber Data Anlysis v0.1 Notebook: [Uber-Data_Analysis-0.1.ipynb](https://github.com/Link-/uber_data/blob/master/analysis/Uber-Data_Analysis-0.1.ipynb)



