Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/LongxingTan/Time-series-prediction

tfts: Time Series Deep Learning Models in TensorFlow
https://github.com/LongxingTan/Time-series-prediction

deep-learning forecasting keras-forecasting keras-prediction keras-time-series machine-learning neural-network prediction seq2seq tensorflow tf2 time-series time-series-forecast time-series-forecasting timeseries transformer wavenet

Last synced: 3 months ago
JSON representation

tfts: Time Series Deep Learning Models in TensorFlow

Awesome Lists containing this project

README

        

[license-image]: https://img.shields.io/badge/License-MIT-blue.svg
[license-url]: https://opensource.org/licenses/MIT
[pypi-image]: https://badge.fury.io/py/tfts.svg
[pypi-url]: https://pypi.python.org/pypi/tfts
[pepy-image]: https://pepy.tech/badge/tfts/month
[pepy-url]: https://pepy.tech/project/tfts
[build-image]: https://github.com/LongxingTan/Time-series-prediction/actions/workflows/test.yml/badge.svg?branch=master
[build-url]: https://github.com/LongxingTan/Time-series-prediction/actions/workflows/test.yml?query=branch%3Amaster
[lint-image]: https://github.com/LongxingTan/Time-series-prediction/actions/workflows/lint.yml/badge.svg?branch=master
[lint-url]: https://github.com/LongxingTan/Time-series-prediction/actions/workflows/lint.yml?query=branch%3Amaster
[docs-image]: https://readthedocs.org/projects/time-series-prediction/badge/?version=latest
[docs-url]: https://time-series-prediction.readthedocs.io/en/latest/?version=latest
[coverage-image]: https://codecov.io/gh/longxingtan/Time-series-prediction/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/longxingtan/Time-series-prediction?branch=master
[contributing-image]: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat
[contributing-url]: https://github.com/longxingtan/Time-series-prediction/blob/master/CONTRIBUTING.md
[codeql-image]: https://github.com/longxingtan/Time-series-prediction/actions/workflows/codeql-analysis.yml/badge.svg
[codeql-url]: https://github.com/longxingtan/Time-series-prediction/actions/workflows/codeql-analysis.yml




[![LICENSE][license-image]][license-url]
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Lint Status][lint-image]][lint-url]
[![Docs Status][docs-image]][docs-url]
[![Code Coverage][coverage-image]][coverage-url]
[![Contributing][contributing-image]][contributing-url]

**[Documentation](https://time-series-prediction.readthedocs.io)** | **[Tutorials](https://time-series-prediction.readthedocs.io/en/latest/tutorials.html)** | **[Release Notes](https://time-series-prediction.readthedocs.io/en/latest/CHANGELOG.html)** | **[中文](https://github.com/LongxingTan/Time-series-prediction/blob/master/README_CN.md)**

**TFTS** (TensorFlow Time Series) is an easy-to-use time series package, supporting the classical and latest deep learning methods in TensorFlow or Keras.
- Support sota performance for time series task (prediction, classification, anomaly detection)
- Provide advanced deep learning models for industry, research and competition
- Documentation lives at [time-series-prediction.readthedocs.io](https://time-series-prediction.readthedocs.io)

## Tutorial

**Installation**

- python >= 3.7
- tensorflow >= 2.4

```shell
pip install tfts
```

**Quick start**

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LHdbrXmQGBSQuNTsbbM5-lAk5WENWF-Q?usp=sharing)
[![Open in Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/code/tanlongxing/tensorflow-time-series-starter-tfts/notebook)

```python
import matplotlib.pyplot as plt
import tfts
from tfts import AutoModel, AutoConfig, KerasTrainer

train_length = 24
predict_length = 8
(x_train, y_train), (x_valid, y_valid) = tfts.get_data("sine", train_length, predict_length, test_size=0.2)

model_name_or_path = 'seq2seq'
config = AutoConfig.for_model(model_name_or_path)
model = AutoModel.from_config(config, predict_length=predict_length)
trainer = KerasTrainer(model)
trainer.train((x_train, y_train), (x_valid, y_valid), n_epochs=3)

pred = trainer.predict(x_valid)
trainer.plot(history=x_valid, true=y_valid, pred=pred)
plt.show()
```

**Prepare your own data**

You could train your own data by preparing 3D data as inputs, for both inputs and targets
- option1 `np.ndarray`
- option2 `tf.data.Dataset`

Encoder only model inputs

```python
import numpy as np
from tfts import AutoConfig, AutoModel, KerasTrainer

train_length = 49
predict_length = 10
n_feature = 2

x_train = np.random.rand(1, train_length, n_feature) # inputs: (batch, train_length, feature)
y_train = np.random.rand(1, predict_length, 1) # target: (batch, predict_length, 1)
x_valid = np.random.rand(1, train_length, n_feature)
y_valid = np.random.rand(1, predict_length, 1)

config = AutoConfig.for_model('rnn')
model = AutoModel.from_config(config, predict_length=predict_length)
trainer = KerasTrainer(model)
trainer.train(train_dataset=(x_train, y_train), valid_dataset=(x_valid, y_valid), n_epochs=1)
```

Encoder-decoder model inputs

```python
# option1: np.ndarray
import numpy as np
from tfts import AutoConfig, AutoModel, KerasTrainer

train_length = 49
predict_length = 10
n_encoder_feature = 2
n_decoder_feature = 3

x_train = (
np.random.rand(1, train_length, 1), # inputs: (batch, train_length, 1)
np.random.rand(1, train_length, n_encoder_feature), # encoder_feature: (batch, train_length, encoder_features)
np.random.rand(1, predict_length, n_decoder_feature), # decoder_feature: (batch, predict_length, decoder_features)
)
y_train = np.random.rand(1, predict_length, 1) # target: (batch, predict_length, 1)

x_valid = (
np.random.rand(1, train_length, 1),
np.random.rand(1, train_length, n_encoder_feature),
np.random.rand(1, predict_length, n_decoder_feature),
)
y_valid = np.random.rand(1, predict_length, 1)

config = AutoConfig.for_model("seq2seq")
model = AutoModel.from_config(config, predict_length=predict_length)
trainer = KerasTrainer(model)
trainer.train((x_train, y_train), (x_valid, y_valid), n_epochs=1)
```

```python
# option2: tf.data.Dataset
import tensorflow as tf
from tfts import AutoConfig, AutoModel, KerasTrainer

class FakeReader(object):
def __init__(self, predict_length):
train_length = 49
n_encoder_feature = 2
n_decoder_feature = 3
self.x = np.random.rand(15, train_length, 1)
self.encoder_feature = np.random.rand(15, train_length, n_encoder_feature)
self.decoder_feature = np.random.rand(15, predict_length, n_decoder_feature)
self.target = np.random.rand(15, predict_length, 1)

def __len__(self):
return len(self.x)

def __getitem__(self, idx):
return {
"x": self.x[idx],
"encoder_feature": self.encoder_feature[idx],
"decoder_feature": self.decoder_feature[idx],
}, self.target[idx]

def iter(self):
for i in range(len(self.x)):
yield self[i]

predict_length = 10
train_reader = FakeReader(predict_length=predict_length)
train_loader = tf.data.Dataset.from_generator(
train_reader.iter,
({"x": tf.float32, "encoder_feature": tf.float32, "decoder_feature": tf.float32}, tf.float32),
)
train_loader = train_loader.batch(batch_size=1)
valid_reader = FakeReader(predict_length=predict_length)
valid_loader = tf.data.Dataset.from_generator(
valid_reader.iter,
({"x": tf.float32, "encoder_feature": tf.float32, "decoder_feature": tf.float32}, tf.float32),
)
valid_loader = valid_loader.batch(batch_size=1)

config = AutoConfig.for_model("seq2seq")
model = AutoModel.from_config(config, predict_length=predict_length)
trainer = KerasTrainer(model)
trainer.train(train_dataset=train_loader, valid_dataset=valid_loader, n_epochs=1)
```

**Prepare custom model config**

```python
import tensorflow as tf
import tfts
from tfts import AutoModel, AutoConfig

config = AutoConfig.for_model('rnn')
print(config)
config.rnn_hidden_size = 128

model = AutoModel.from_config(config, predict_length=7, )
```

**Build your own model**

Full list of model tfts supported using AutoModel

- rnn
- tcn
- bert
- nbeats
- seq2seq
- wavenet
- transformer
- informer

You could build the custom model based on tfts, especially
- add custom-defined embeddings for categorical variables
- add custom-defined head layers for classification or anomaly task

```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tfts import AutoModel, AutoConfig

def build_model():
train_length = 24
train_features = 15
predict_length = 16

inputs = Input([train_length, train_features])
config = AutoConfig.for_model("seq2seq")
backbone = AutoModel.from_config(config, predict_length=predict_length)
outputs = backbone(inputs)
outputs = Dense(1, activation="sigmoid")(outputs)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(loss="mse", optimizer="rmsprop")
return model
```

## Examples

- [TFTS-Bert](https://github.com/LongxingTan/KDDCup2022-Baidu) wins the **3rd place** in KDD Cup 2022-wind power forecasting
- [TFTS-Seq2seq](https://github.com/LongxingTan/Data-competitions/tree/master/tianchi-enso-prediction) wins the **4th place** in Tianchi-ENSO prediction 2021

For other DL frameworks, try [pytorch-forecasting](https://github.com/jdb78/pytorch-forecasting), [gluonts](https://github.com/awslabs/gluonts), [paddlets](https://github.com/PaddlePaddle/PaddleTS)

## Citation

If you find tfts project useful in your research, please consider cite:

```
@misc{tfts2020,
author = {Longxing Tan},
title = {Time series prediction},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/longxingtan/time-series-prediction}},
}
```