Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MIC-DKFZ/napari-sam
https://github.com/MIC-DKFZ/napari-sam
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/MIC-DKFZ/napari-sam
- Owner: MIC-DKFZ
- License: apache-2.0
- Created: 2023-04-06T11:02:03.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-03-04T15:41:39.000Z (10 months ago)
- Last Synced: 2024-10-03T03:28:56.215Z (3 months ago)
- Language: Python
- Size: 6.76 MB
- Stars: 221
- Watchers: 9
- Forks: 24
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Segment Anything Model (SAM) in Napari
[![License Apache Software License 2.0](https://img.shields.io/pypi/l/napari-sam.svg?color=green)](https://github.com/MIC-DKFZ/napari-sam/raw/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/napari-sam.svg?color=green)](https://pypi.org/project/napari-sam)
[![Python Version](https://img.shields.io/pypi/pyversions/napari-sam.svg?color=green)](https://python.org)
[![tests](https://github.com/MIC-DKFZ/napari-sam/workflows/tests/badge.svg)](https://github.com/MIC-DKFZ/napari-sam/actions)
[![codecov](https://codecov.io/gh/MIC-DKFZ/napari-sam/branch/main/graph/badge.svg)](https://codecov.io/gh/MIC-DKFZ/napari-sam)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-sam)](https://napari-hub.org/plugins/napari-sam)Segment anything with our **Napari** integration of Meta AI's new **Segment Anything Model (SAM)**!
SAM is the new segmentation system from Meta AI capable of **one-click segmentation of any object**, and now, our plugin neatly integrates this into Napari.
We have already **extended** SAM's click-based foreground separation to full **click-based semantic segmentation and instance segmentation**!
At last, our SAM integration supports both **2D and 3D images**!
----------------------------------
Everything mode | Click-based semantic segmentation mode | Click-based instance segmentation mode
:-------------------------:|:-------------------------:|:-------------------------:
![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_everything.png) | ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_semantic.png) | ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_instance.png)----------------------------------
SAM in Napari demo
https://user-images.githubusercontent.com/3471895/236152620-0de983db-954b-4480-97b9-901ee82f8edd.mp4
----------------------------------
## Installation
The plugin requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
Install Napari via [pip]:
pip install napari[all]You can install `napari-sam` via [pip]:
pip install git+https://github.com/facebookresearch/segment-anything.git
pip install napari-samTo install latest development version :
pip install git+https://github.com/MIC-DKFZ/napari-sam.git
## Usage
Start Napari from the console with:
napari
Then navigate to `Plugins -> Segment Anything (napari-sam)` and drag & drop an image into Napari. At last create, a labels layer that will be used for the SAM predictions, by clicking in the layer list on the third button.
You can then auto-download one of the available SAM models (this can take 1-2 minutes), activate one of the annotations & segmentation modes, and you are ready to go!
## Contributing
Contributions are very welcome. Tests can be run with [tox], please ensure
the coverage at least stays the same before you submit a pull request.## License
Distributed under the terms of the [Apache Software License 2.0] license,
"napari-sam" is free and open source software## Issues
If you encounter any problems, please [file an issue] along with a detailed description.
[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin[file an issue]: https://github.com/MIC-DKFZ/napari-sam/issues
[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/# Acknowledgements
napari-sam is developed and maintained by the Applied Computer Vision Lab (ACVL) of [Helmholtz Imaging](http://helmholtz-imaging.de)
and the [Division of Medical Image Computing](https://www.dkfz.de/en/mic/index.php) at the
[German Cancer Research Center (DKFZ)](https://www.dkfz.de/en/index.html).