Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/MSeifert04/simple_benchmark

A simple benchmarking package including visualization facilities.
https://github.com/MSeifert04/simple_benchmark

Last synced: 12 days ago
JSON representation

A simple benchmarking package including visualization facilities.

Awesome Lists containing this project

README

        

simple_benchmark
================

A simple benchmarking package including visualization facilities.

The goal of this package is to provide a simple way to compare the performance
of different approaches for different inputs and to visualize the result.

Documentation
-------------

.. image:: https://readthedocs.org/projects/simple-benchmark/badge/?version=stable
:target: http://simple-benchmark.readthedocs.io/en/stable/?badge=stable
:alt: Documentation Status

Downloads
---------

.. image:: https://img.shields.io/pypi/v/simple_benchmark.svg
:target: https://pypi.python.org/pypi/simple_benchmark
:alt: PyPI Project

.. image:: https://img.shields.io/github/release/MSeifert04/simple_benchmark.svg
:target: https://github.com/MSeifert04/simple_benchmark/releases
:alt: GitHub Project

Installation
------------

Using ``pip``:

.. code::

python -m pip install simple_benchmark

Or installing the most recent version directly from ``git``:

.. code::

python -m pip install git+https://github.com/MSeifert04/simple_benchmark.git

To utilize the all features of the library (for example visualization) you need to
install the optional dependencies:

- `NumPy `_
- `pandas `_
- `matplotlib `_

Or install them automatically using:

.. code::

python -m pip install simple_benchmark[optional]

Getting started
---------------

Suppose you want to compare how NumPys sum and Pythons sum perform on lists
of different sizes::

>>> from simple_benchmark import benchmark
>>> import numpy as np
>>> funcs = [sum, np.sum]
>>> arguments = {i: [1]*i for i in [1, 10, 100, 1000, 10000, 100000]}
>>> argument_name = 'list size'
>>> aliases = {sum: 'Python sum', np.sum: 'NumPy sum'}
>>> b = benchmark(funcs, arguments, argument_name, function_aliases=aliases)

The result can be visualized with ``pandas`` (needs to be installed)::

>>> b
Python sum NumPy sum
1 9.640884e-08 0.000004
10 1.726930e-07 0.000004
100 7.935484e-07 0.000008
1000 7.040000e-06 0.000042
10000 6.910000e-05 0.000378
100000 6.899000e-04 0.003941

Or with ``matplotlib`` (has to be installed too)::

>>> b.plot()

To save the plotted benchmark as PNG file::

>>> import matplotlib.pyplot as plt
>>> plt.savefig('sum_example.png')

.. image:: ./docs/source/sum_example.png

Command-Line interface
----------------------

.. warning::
The command line interface is highly experimental. It's very likely to
change its API.

It's an experiment to run it as command-line tool, especially useful if you
want to run it on multiple files and don't want the boilerplate.

File ``sum.py``::

import numpy as np

def bench_sum(l, func=sum): # <-- function name needs to start with "bench_"
return func(l)

def bench_numpy_sum(l, func=np.sum): # <-- using func parameter with the actual function helps
return np.sum(l)

def args_list_length(): # <-- function providing the argument starts with "args_"
for i in [1, 10, 100, 1000, 10000, 100000]:
yield i, [1] * i

Then run::

$ python -m simple_benchmark sum.py sum.png

With a similar result:

.. image:: ./docs/source/sum_example_cli.png

Similar packages
----------------

- `perfplot `_ by Nico Schlömer.