Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MachineLearningSystem/MGG-OSDI23-AE
OSDI'23-MGG-Artifact
https://github.com/MachineLearningSystem/MGG-OSDI23-AE
Last synced: 9 days ago
JSON representation
OSDI'23-MGG-Artifact
- Host: GitHub
- URL: https://github.com/MachineLearningSystem/MGG-OSDI23-AE
- Owner: MachineLearningSystem
- Fork: true (YukeWang96/MGG_OSDI23)
- Created: 2023-04-25T01:36:28.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2023-04-25T01:00:29.000Z (over 1 year ago)
- Last Synced: 2024-08-02T19:37:11.676Z (4 months ago)
- Homepage:
- Size: 1.04 MB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-AI-system - Accelerating Graph Neural Networks with Fine-grained intra-kernel Communication-Computation Pipelining on Multi-GPU Platforms OSDI'23
README
# Artifact for OSDI'23 paper
> Yuke Wang, et al. *Accelerating Graph Neural Networks with Fine-grained intra-kernel Communication-Computation Pipelining on Multi-GPU Platforms.* OSDI'23.[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7853910.svg)](https://doi.org/10.5281/zenodo.7853910)
# 1. Setup (Skip to Section-2 if evaluated on provided GCP)
## 1.1. Clone this project from Github.
```
git clone --recursive [email protected]:YukeWang96/MGG-OSDI23-AE.git
```## 1.2. Download libraries and datasets.
+ Download libraries (`cudnn-v8.2, nvshmem_src_2.0.3-0, openmpi-4.1.1`).
```
wget https://storage.googleapis.com/mgg_data/local.tar.gz
tar -zxvf local.tar.gz && rm local.tar.gz
tar -zxvf local/nvshmem_src_2.0.3-0/build_cu112.tar.gz
```
+ Setup baseline DGL
```
cd dgl_pydirect_internal
wget https://storage.googleapis.com/mgg_data/graphdata.tar.gz && tar -zxvf graphdata.tar.gz && rm graphdata.tar.gz
cd ..
```+ Setup baseline ROC
```
cd roc-new
git submodule update --init --recursive
wget https://storage.googleapis.com/mgg_data/data.tar.gz && tar -zxvf data.tar.gz && rm -rf data.tar.gz
```
or
```
gsutil cp -r gs://mgg_data/roc-new/ .
```## 1.3. Launch Docker for MGG.
```
cd Docker
./launch.sh
```## 1.4. Compile implementation.
```
mkdir build && cd build && cmake .. && cd ..
./build.sh
```
# 2. Run initial test experiment.
+ Please try study experiments in below **Section-3.4** and **Section-3.5**# 3. Reproduce the major results from paper.
## 3.1 Compare with UVM on 4xA100 and 8xA100 (Fig.8a and Fig.8b).
```
./0_run_MGG_UVM_4GPU_GCN.sh
./0_run_MGG_UVM_4GPU_GIN.sh
./0_run_MGG_UVM_8GPU_GCN.sh
./0_run_MGG_UVM_8GPU_GIN.sh
```
> Note that the results can be found at `Fig_8_UVM_MGG_4GPU_GCN.csv`, `Fig_8_UVM_MGG_4GPU_GIN.csv`, `Fig_8_UVM_MGG_8GPU_GCN.csv`, and `Fig_8_UVM_MGG_8GPU_GIN.csv`.## 3.2 Compare with DGL on 8xA100 for GCN and GIN (Fig.7a and Fig.7b).
```
./launch_docker.sh
cd gcn/
./0_run_gcn.sh
cd ../gin/
./0_run_gin.sh
```> Note that the results can be found at `1_dgl_gin.csv` and `1_dgl_gcn.csv` and our MGG reference is in `MGG_GCN_8GPU.csv` and `MGG_8GPU_GIN.csv`.
## 3.3 Compare with ROC on 8xA100 (Fig.9).
```
cd roc-new/docker
./launch.sh
```
> Note that the results can be found at `Fig_9_ROC_MGG_8GPU_GCN.csv` and `Fig_9_ROC_MGG_8GPU_GIN.csv`.Results of ROC is similar as
| Dataset | Time (ms) |
|---------------|----------:|
| reddit | 425.67 |
| enwiki-2013 | 619.33 |
| it-2004 | 5160.18 |
| paper100M | 8179.35 |
| ogbn-products | 529.74 |
| ogbn-proteins | 423.82 |
| com-orkut | 571.62 |## 3.4 Compare NP with w/o NP (Fig.10a).
```
python 2_MGG_NP.py
```
> Note that the results can be found at `MGG_NP_study.csv`. Similar to following table.| Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
|--------------|----------:|---------:|------------:|
| Reddit | 76.797 | 16.716 | 4.594 |
| enwiki-2013 | 290.169 | 88.249 | 3.288 |
| ogbn-product | 86.362 | 26.008 | 3.321 |## 3.5 Compare WL with w/o WL (Fig.10b).
```
python 3_MGG_WL.py
```
> Note that the results can be found at `MGG_WL_study.csv`. Results are similar to| Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
|--------------|----------:|---------:|------------:|
| Reddit | 75.035 | 18.92 | 3.966 |
| enwiki-2013 | 292.022 | 104.878 | 2.784 |
| ogbn-product | 86.632 | 29.941 | 2.893 |## 3.6 Compare API (Fig.10c).
```
python 4_MGG_API.py
```
> Note that the results can be found at `MGG_API_study.csv`. Results are similar to| Norm.Time w.r.t. Thread | MGG_Thread | MGG_Warp | MGG_Block |
|-------------------------|------------|----------|-----------|
| Reddit | 1.0 | 0.299 | 0.295 |
| enwiki-2013 | 1.0 | 0.267 | 0.263 |
| ogbn-product | 1.0 | 0.310 | 0.317 |## 3.7 Design Space Search (Fig.11a)
```
python 5_MGG_DSE_4GPU.py
```
> Note that the results can be found at `Reddit_4xA100_dist_ps.csv` and `Reddit_4xA100_dist_wpb.csv`. Results similar to+ `Reddit_4xA100_dist_ps.csv`
| dist\ps | 1 | 2 | 4 | 8 | 16 | 32 |
|---------|-------:|-------:|-------:|-------:|-------:|-------:|
| 1 | 17.866 | 17.459 | 16.821 | 16.244 | 16.711 | 17.125 |
| 2 | 17.247 | 16.722 | 16.437 | 16.682 | 17.053 | 17.808 |
| 4 | 16.826 | 16.41 | 16.583 | 17.217 | 17.627 | 18.298 |
| 8 | 16.271 | 16.725 | 17.193 | 17.655 | 18.426 | 18.99 |
| 16 | 16.593 | 17.214 | 17.617 | 18.266 | 19.009 | 19.909 |+ `Reddit_4xA100_dist_wpb.csv`
| dist\wpb | 1 | 2 | 4 | 8 | 16 |
|----------|-------:|-------:|-------:|-------:|-------:|
| 1 | 34.773 | 23.164 | 16.576 | 15.235 | 16.519 |
| 2 | 34.599 | 23.557 | 17.254 | 15.981 | 19.56 |
| 4 | 34.835 | 23.616 | 17.674 | 17.034 | 22.084 |
| 8 | 34.729 | 23.817 | 18.302 | 18.708 | 25.656 |
| 16 | 34.803 | 24.161 | 18.879 | 23.44 | 32.978 |```
python 5_MGG_DSE_8GPU.py
```
> Note that the results can be found at `Reddit_8xA100_dist_ps.csv` and `Reddit_8xA100_dist_wpb.csv`.## Reference
* **NVIDIA OpenSHMEM Library (NVSHMEM) Documentation.**
https://docs.nvidia.com/nvshmem/api/index.html* **NVIDIA Unified Memory.**
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/* **cuDNN Example for MNIST.**
https://github.com/haanjack/mnist-cudnn* [**Deep Graph Library**](https://github.com/dmlc/dgl)
Wang, Minjie, et al.
**Deep graph library: A graph-centric, highly-performant package for graph neural networks.**. *The International Conference on Learning Representations (ICLR'19).** [**ROC**](https://github.com/jiazhihao/ROC)
Jia, Zhihao, et al.
**Improving the accuracy, scalability, and performance of graph neural networks with roc.** *Proceedings of Machine Learning and Systems 2 (MLsys'20).** [**GNNAdvisor**](https://github.com/YukeWang96/OSDI21_AE)
Wang, Yuke, et al. **GNNAdvisor: An adaptive and efficient runtime system for GNN acceleration on GPUs.** *15th USENIX symposium on operating systems design and implementation (OSDI'21)*.* [**GE-SpMM**](https://github.com/hgyhungry/ge-spmm)
Huang, Guyue, et al. **Ge-spmm: General-purpose sparse matrix-matrix multiplication on gpus for graph neural networks.** *International Conference for High Performance Computing, Networking, Storage and Analysis (SC'20)*.