Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/MachineLearningSystem/MGG-OSDI23-AE

OSDI'23-MGG-Artifact
https://github.com/MachineLearningSystem/MGG-OSDI23-AE

Last synced: 3 months ago
JSON representation

OSDI'23-MGG-Artifact

Awesome Lists containing this project

README

        

# Artifact for OSDI'23 paper
> Yuke Wang, et al. *Accelerating Graph Neural Networks with Fine-grained intra-kernel Communication-Computation Pipelining on Multi-GPU Platforms.* OSDI'23.

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7853910.svg)](https://doi.org/10.5281/zenodo.7853910)

# 1. Setup (Skip to Section-2 if evaluated on provided GCP)

## 1.1. Clone this project from Github.
```
git clone --recursive [email protected]:YukeWang96/MGG-OSDI23-AE.git
```

## 1.2. Download libraries and datasets.
+ Download libraries (`cudnn-v8.2, nvshmem_src_2.0.3-0, openmpi-4.1.1`).
```
wget https://storage.googleapis.com/mgg_data/local.tar.gz
tar -zxvf local.tar.gz && rm local.tar.gz
tar -zxvf local/nvshmem_src_2.0.3-0/build_cu112.tar.gz
```
+ Setup baseline DGL
```
cd dgl_pydirect_internal
wget https://storage.googleapis.com/mgg_data/graphdata.tar.gz && tar -zxvf graphdata.tar.gz && rm graphdata.tar.gz
cd ..
```

+ Setup baseline ROC
```
cd roc-new
git submodule update --init --recursive
wget https://storage.googleapis.com/mgg_data/data.tar.gz && tar -zxvf data.tar.gz && rm -rf data.tar.gz
```
or
```
gsutil cp -r gs://mgg_data/roc-new/ .
```

## 1.3. Launch Docker for MGG.
```
cd Docker
./launch.sh
```

## 1.4. Compile implementation.
```
mkdir build && cd build && cmake .. && cd ..
./build.sh
```
# 2. Run initial test experiment.
+ Please try study experiments in below **Section-3.4** and **Section-3.5**

# 3. Reproduce the major results from paper.

## 3.1 Compare with UVM on 4xA100 and 8xA100 (Fig.8a and Fig.8b).
```
./0_run_MGG_UVM_4GPU_GCN.sh
./0_run_MGG_UVM_4GPU_GIN.sh
./0_run_MGG_UVM_8GPU_GCN.sh
./0_run_MGG_UVM_8GPU_GIN.sh
```
> Note that the results can be found at `Fig_8_UVM_MGG_4GPU_GCN.csv`, `Fig_8_UVM_MGG_4GPU_GIN.csv`, `Fig_8_UVM_MGG_8GPU_GCN.csv`, and `Fig_8_UVM_MGG_8GPU_GIN.csv`.

## 3.2 Compare with DGL on 8xA100 for GCN and GIN (Fig.7a and Fig.7b).
```
./launch_docker.sh
cd gcn/
./0_run_gcn.sh
cd ../gin/
./0_run_gin.sh
```

> Note that the results can be found at `1_dgl_gin.csv` and `1_dgl_gcn.csv` and our MGG reference is in `MGG_GCN_8GPU.csv` and `MGG_8GPU_GIN.csv`.

## 3.3 Compare with ROC on 8xA100 (Fig.9).
```
cd roc-new/docker
./launch.sh
```
> Note that the results can be found at `Fig_9_ROC_MGG_8GPU_GCN.csv` and `Fig_9_ROC_MGG_8GPU_GIN.csv`.

Results of ROC is similar as

| Dataset | Time (ms) |
|---------------|----------:|
| reddit | 425.67 |
| enwiki-2013 | 619.33 |
| it-2004 | 5160.18 |
| paper100M | 8179.35 |
| ogbn-products | 529.74 |
| ogbn-proteins | 423.82 |
| com-orkut | 571.62 |

## 3.4 Compare NP with w/o NP (Fig.10a).
```
python 2_MGG_NP.py
```
> Note that the results can be found at `MGG_NP_study.csv`. Similar to following table.

| Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
|--------------|----------:|---------:|------------:|
| Reddit | 76.797 | 16.716 | 4.594 |
| enwiki-2013 | 290.169 | 88.249 | 3.288 |
| ogbn-product | 86.362 | 26.008 | 3.321 |

## 3.5 Compare WL with w/o WL (Fig.10b).

```
python 3_MGG_WL.py
```
> Note that the results can be found at `MGG_WL_study.csv`. Results are similar to

| Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
|--------------|----------:|---------:|------------:|
| Reddit | 75.035 | 18.92 | 3.966 |
| enwiki-2013 | 292.022 | 104.878 | 2.784 |
| ogbn-product | 86.632 | 29.941 | 2.893 |

## 3.6 Compare API (Fig.10c).
```
python 4_MGG_API.py
```
> Note that the results can be found at `MGG_API_study.csv`. Results are similar to

| Norm.Time w.r.t. Thread | MGG_Thread | MGG_Warp | MGG_Block |
|-------------------------|------------|----------|-----------|
| Reddit | 1.0 | 0.299 | 0.295 |
| enwiki-2013 | 1.0 | 0.267 | 0.263 |
| ogbn-product | 1.0 | 0.310 | 0.317 |

## 3.7 Design Space Search (Fig.11a)
```
python 5_MGG_DSE_4GPU.py
```
> Note that the results can be found at `Reddit_4xA100_dist_ps.csv` and `Reddit_4xA100_dist_wpb.csv`. Results similar to

+ `Reddit_4xA100_dist_ps.csv`

| dist\ps | 1 | 2 | 4 | 8 | 16 | 32 |
|---------|-------:|-------:|-------:|-------:|-------:|-------:|
| 1 | 17.866 | 17.459 | 16.821 | 16.244 | 16.711 | 17.125 |
| 2 | 17.247 | 16.722 | 16.437 | 16.682 | 17.053 | 17.808 |
| 4 | 16.826 | 16.41 | 16.583 | 17.217 | 17.627 | 18.298 |
| 8 | 16.271 | 16.725 | 17.193 | 17.655 | 18.426 | 18.99 |
| 16 | 16.593 | 17.214 | 17.617 | 18.266 | 19.009 | 19.909 |

+ `Reddit_4xA100_dist_wpb.csv`

| dist\wpb | 1 | 2 | 4 | 8 | 16 |
|----------|-------:|-------:|-------:|-------:|-------:|
| 1 | 34.773 | 23.164 | 16.576 | 15.235 | 16.519 |
| 2 | 34.599 | 23.557 | 17.254 | 15.981 | 19.56 |
| 4 | 34.835 | 23.616 | 17.674 | 17.034 | 22.084 |
| 8 | 34.729 | 23.817 | 18.302 | 18.708 | 25.656 |
| 16 | 34.803 | 24.161 | 18.879 | 23.44 | 32.978 |

```
python 5_MGG_DSE_8GPU.py
```
> Note that the results can be found at `Reddit_8xA100_dist_ps.csv` and `Reddit_8xA100_dist_wpb.csv`.

## Reference
* **NVIDIA OpenSHMEM Library (NVSHMEM) Documentation.**

https://docs.nvidia.com/nvshmem/api/index.html

* **NVIDIA Unified Memory.**

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

* **cuDNN Example for MNIST.**

https://github.com/haanjack/mnist-cudnn

* [**Deep Graph Library**](https://github.com/dmlc/dgl)

Wang, Minjie, et al.
**Deep graph library: A graph-centric, highly-performant package for graph neural networks.**. *The International Conference on Learning Representations (ICLR'19).*

* [**ROC**](https://github.com/jiazhihao/ROC)

Jia, Zhihao, et al.
**Improving the accuracy, scalability, and performance of graph neural networks with roc.** *Proceedings of Machine Learning and Systems 2 (MLsys'20).*

* [**GNNAdvisor**](https://github.com/YukeWang96/OSDI21_AE)

Wang, Yuke, et al. **GNNAdvisor: An adaptive and efficient runtime system for GNN acceleration on GPUs.** *15th USENIX symposium on operating systems design and implementation (OSDI'21)*.

* [**GE-SpMM**](https://github.com/hgyhungry/ge-spmm)

Huang, Guyue, et al. **Ge-spmm: General-purpose sparse matrix-matrix multiplication on gpus for graph neural networks.** *International Conference for High Performance Computing, Networking, Storage and Analysis (SC'20)*.